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Chapter 1
Randomized Controlled Trials

How best to understand and characterize causality is an age-old question in
philosophy. As such, one might expect that any discussion of causal inference
would need to be framed in terms of subtle and esoteric concepts. However,
a ground-breaking line of work starting with Neyman [1923] and Rubin [1974]
established that—although causality is in general a delicate and complicated
notion—there exists an important class of problems, randomized controlled
trials, where it is possible to approach causal questions in a practical and
conceptually straight-forward way via careful application of randomization,
averaging, and counterfactual reasoning.1

This chapter presents a brief overview of statistical estimation and infer-
ence in randomized controlled trials (RCTs). When available, evidence drawn
from RCTs is often considered gold standard statistical evidence; and thus
methods for studying RCTs form the foundation of the statistical toolkit for
causal inference. Furthermore, many widely used observational study designs
in, e.g., econometrics or epidemiology are motivated by analogy to RCTs; and
so this chapter will also serve as a stepping stone to subsequent discussions of
estimation and inference in observational studies.

Average treatment effects Suppose that we have run a RCT with n study
participants i = 1, . . . , n, where each unit i is assigned a binary treatment
Wi ∈ {0, 1} and we then measure an outcome Yi. Our goal is to estimate the
effect of the treatment on the outcome. Following the Neyman–Rubin causal
model, we define the causal effect of a treatment via potential outcomes:
For each treatment level w ∈ {0, 1}, we define potential outcomes Yi(1) and
Yi(0) corresponding to the outcome the i-th subject would have experienced
had they respectively received the treatment or not, such that Yi = Yi(Wi).

1See Holland [1986] for one perspective on the work of Neyman [1923] and Rubin [1974]
in a historical context.

4



The individual causal effect of the treatment on the i-th unit is then2

∆i = Yi(1)− Yi(0). (1.1)

The fundamental problem in causal inference is that only one treatment can
be assigned to a given individual, and so only one of Yi(0) and Yi(1) can ever
be observed. Thus, ∆i can never be observed directly.

Although ∆i is itself unknowable, we can (perhaps remarkably) use random-
ized experiments to learn certain properties of the ∆i. In finite samples, with-
out any assumptions on how study participants were generated (or equivalently,
conditionally on the potential outcomes of study participants), randomization
enables us to get unbiased estimates of the sample average treatment effect
(SATE)

∆ =
1

n

n∑
i=1

(Yi(1)− Yi(0)) . (1.2)

Furthermore, if we assume that study participants are independently drawn
from a population P , then randomized experiments enable unbiased and large-
sample consistent estimates of the (population) average treatment effect
(ATE)

τ = EP [Yi(1)− Yi(0)] . (1.3)

This chapter will discuss properties of a number of different estimators for these
two quantities.

1.1 Difference-in-means estimation

In a randomized controlled trial, there are many ways to estimate the average
treatment effect. Perhaps the simplest and most intuitive way of doing so is
via the difference-in-means estimator,

τ̂DM :=
1

n1

∑
Wi=1

Yi −
1

n0

∑
Wi=0

Yi, nw = |{i : Wi = w}| . (1.4)

In our setting, this difference in means estimator is unbiased essentially without
assumptions, and the average treatment effect is identified directly via random-
ization. Suppose that the potential outcomes model given above is valid; or, as

2One major assumption that’s baked into this notation is that binary counterfactuals
exist, i.e., that it makes sense to talk about the effect of choosing to intervene or not on
a single unit, without considering the treatments assigned to other units. This may be a
reasonable assumption in medicine (i.e., that the treatment prescribed to patient A doesn’t
affect patient B), but are less appropriate in some social or economic settings where network
effects may arise. We will discuss causal inference under interference in Chapters 11 and 12.
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this is often stated in the literature, that the Stable Unit Treatment Values
Assumption (SUTVA) holds:

Yi = Yi(Wi), i = 1, . . . , n. (1.5)

Suppose furthermore that the treatment is in fact randomized, i.e., that condi-
tionally all the potential outcomes {Yi(0), Yi(1)}ni=1 and the number of treated
units n1, all units are treated with the same probability:3

P
[
Wi = 1

∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
=
n1

n
, i = 1, . . . , n. (1.6)

Then τ̂DM is finite-sample unbiased for the SATE as defined in (1.2).

Theorem 1.1. Under assumptions (1.5) and (1.6),

E
[
τ̂DM

∣∣ {Yi(0), Yi(1)}ni=1 , n0 > 0, n1 > 0
]

= ∆. (1.7)

Proof. Whenever n1 > 0, i.e., we have at least 1 treated unit,

E

[
1

n1

∑
Wi=1

Yi
∣∣ {Yi(0), Yi(1)}ni=1 , n1

]

= E

[
1

n1

n∑
i=1

WiYi
∣∣ {Yi(0), Yi(1)}ni=1 , n1

]

= E

[
1

n1

n∑
i=1

WiYi(1)
∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
(SUTVA)

=
1

n1

n∑
i=1

Yi(1)E
[
Wi

∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
=

1

n

n∑
i=1

Yi(1) (random assignment).

An analogous result holds for the average of the controls when n0 > 0.

3Here, we’re implicitly assuming that each unit has the same marginal probability of
getting treated. Standard experimental designs that satisfy this assumption include the
Bernoulli-randomized trial, where each unit is independently treated with probability 0 <
π < 1; the completely randomized trial, where each set of n1 treated units are equally likely
to get chosen for treatment; and the matched-pairs design, where we first pair units according
to some algorithm, and then randomly choose one unit in each pair for treatment. Designs
that assign different units different marginal treatment probabilities may also be considered;
however, as discussed in the next chapter, analyzing them requires more care.
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Population Asymptotics The result in Theorem 1.1 is valuable in its gen-
erality: It provides an unbiasedness result under minimal assumptions, and in
particular makes no distributional assumptions on the potential outcomes. In
practical terms, this means we can apply Theorem 1.1 without making any
claims about how the n study participants were recruited.

A limitation of this result, however, is that it does not characterize the
sampling error τ̂DM −∆, and so doesn’t directly provide a roadmap to sta-
tistical inference. In order to make progress, we here make an additional
assumption that the study participants (i.e., formally, the pairs of potential
outcomes {Yi(0), Yi(1)}) are independently drawn from a population P . Such
population-sampling assumptions then enable straight-forward distributional
results and confidence intervals via standard large-sample analysis. It is also
possible to obtain distributional results without making such sampling assump-
tions, but doing so relies on specialized statistical techniques that we will not
pursue for now; we will revisit population-sampling-free methods for inference
in the bibliographic notes at the end of this chapter and in Chapter 12.

Example 1. In 2008, Oregon ran a lottery to allocate additional spots in
its Medicaid program to low-income adults. As reported in Finkelstein et al.
[2012], ∼ 90, 000 people joined the lottery, and of them a (randomly selected)
∼ 35, 000 were allowed to apply for Medicaid. The authors consider a number
of outcomes, such as healthcare use and expenditures. Finite-sample analysis
following Theorem 1.1 shows that, among lottery participants, the difference-
in-means estimator is unbiased for the average effect of being allowed to apply
for Medicaid on outcomes considered, regardless of how the set of lottery par-
ticipants was created. The asymptotic tools discussed below make a further
assumption that the lottery participants were independently sampled from from
a relevant larger population (e.g., able-bodied, low-income, uninsured adults
with interest in gaining insurance coverage).

A central limit theorem In addition to IID sampling, we will also be more
specific about how treatment is randomized, and assume that we are in a
Bernoulli trial with4

Wi

∣∣ {Yi(0), Yi(1)} iid∼ Bernoulli(π), 0 < π < 1. (1.8)

4Note that the Bernoulli trial assumption implies the randomization condition (1.6), but
the converse is not true. For example a completely randomized experiment where we give
treatment to a set of bn1 = n/2c units chosen uniformly at random satisfies (1.6) but
not (1.8). The reason we consider Bernoulli trials here is that, under this assumption,
the treatment assignments Wi across units are independent—thus simplifying the statistical
analysis.

7



The following central limit theorem for the difference-in-means estimator can
then be established via simple statistical arguments.

Theorem 1.2. Under the assumptions of Theorem 1.2, suppose furthermore
that the potential outcomes are drawn as {Yi(0), Yi(1)} iid∼P from a distribution
P with bounded second moments and that we run a Bernoulli trial as in (1.8).
Then,

√
n (τ̂DM − τ)⇒ N (0, VDM) , VDM =

Var [Yi(0)]

1− π
+

Var [Yi(1)]

π
. (1.9)

Furthermore, the plug-in variance estimate

V̂DM :=
n

n2
0

∑
Wi=0

(
Yi −

1

n0

∑
Wi=0

Yi

)2

+
n

n2
1

∑
Wi=1

(
Yi −

1

n1

∑
Wi=1

Yi

)2

(1.10)

is consistent, V̂DM →p VDM .

Proof. Defining potential outcome residuals εi(w) = Yi(w) − EP [Yi(w)] for
w = 0, 1, we can express our estimation error as

τ̂DM − τ =
1

n1

∑
Wi=1

εi(1)− 1

n0

∑
Wi=1

εi(0)

=
n

n1

1

n

n∑
i=1

Wi εi(1)− n

n0

1

n

n∑
i=1

(1−Wi) εi(0).

By randomization, one can verify that E [Wi εi(1)] = P [Wi]E
[
εi(1)

∣∣Wi = 1
]

=
P [Wi]E [εi(1)] = 0 and E [(1−Wi)εi(0)] = 0, and finally

Var

[(
Wi εi(1)

(1−Wi) εi(0)

)]
= E

[(
Wi εi(1)

(1−Wi) εi(0)

)⊗2
]

=

(
πVar [εi(1)] 0

0 (1− π) Var [εi(0)]

)
.

Thus, by the standard multivariate central limit theorem

√
n

(
1
n

∑n
i=1Wi εi(1)

1
n

∑n
i=1(1−Wi) εi(0)

)
⇒ N

(
0,

(
πVar [εi(1)] 0

0 (1− π) Var [εi(0)]

))
.

The result (1.9) follows by Slutsky’s lemma because the treatment fraction of
a Bernoulli trial concentrates, n1/n→p π. Meanwhile, (1.10) follows similarly
via the weak law of large numbers.
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The above central limit theorem for τ̂DM immediately enables asymptoti-
cally valid Gaussian confidence intervals for τ . For any 0 < α < 1,

lim
n→∞

P
[
τ ∈

(
τ̂DM ± Φ−1(1− α/2)

√
V̂DM/n

)]
= 1− α, (1.11)

where Φ denotes the standard Gaussian cumulative distribution function.
From a certain perspective, one could argue that the above is all that is

needed to estimate average treatment effects in randomized trials. The dif-
ference in means estimator τ̂DM is consistent and allows for valid asymptotic
inference; moreover, the estimator is very simple to implement, and hard to
“cheat” with (i.e., there is little room for an unscrupulous analyst to try dif-
ferent estimation strategies and report the one that gives the answer closest to
the one they want). On the other hand, our discussion so far has not estab-
lished that τ̂DM is an “optimal” way to use the data in any meaningful sense;
and in fact, we’ll see below that it’s often possible to design estimators with
guarantees that strictly dominate those for τ̂DM .

1.2 Regression adjustments in randomized trials

When analyzing randomized controlled trials, we often have access to pre-
treatment covariates Xi observed together with the treatments Wi and out-
comes Yi. In this case, practitioners often choose to estimate treatment effects
via a linear regression based approach rather than via the simple difference in
means.

There are two standard ways to estimate average treatment effects via linear
regression. The first is to fit a simple linear regression5

Yi ∼ α +Wiτ +Xi · β, (1.12)

and then report the resulting coefficient τ̂SREG := τ̂ as an estimate of the
average treatment effect. The second is to add in full treatment-covariate
interactions, and to fit the interacted linear regression

Yi ∼ α +Wiτ +Xi · β +WiXi · γ. (1.13)

5Throughout, we use notation of the type Yi ∼ Xi · β to mean that, algorithmically, we
have run a regression—here with response Yi and regressors Xi. In other words, this notation
simply means that we assign β̂ := (X ′X)−1X ′Y . This notation does not imply any implicit
model for the data; and in fact, as seen below, one can study the statistical behavior of
regression algorithms under different models for the underlying data.
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One can then estimate the average treatment effect via the average difference
in predictions if everyone vs. no one were treated

τ̂IREG =
1

n

n∑
i=1

α̂ + τ̂ +Xi · (β̂ + γ̂)− 1

n

n∑
i=1

α̂ +Xi · β̂,

= τ̂ +X · γ̂, X :=
1

n

n∑
i=1

Xi.

(1.14)

Both the simple and interacted regression can reasonably be deployed in ran-
domized experiments. For the rest of this chapter, we will focus on properties
of the interacted regression estimator τ̂IREG because it allows for transparent
analysis and is also generally regarded a best practice in the current literature
on causal inference; see the bibliographic notes for further discussion.

Regression adjustments under linearity The linear regression estimator
(1.13) is a statistical estimator that can be studied under a number of different
models for the data. The simplest setting under which to consider the behavior
of τ̂IREG (and compare it to that of τ̂DM) is under an assumption that the
regression model (1.13) is well specified; and this is the setting we will start
with here.

Suppose for now that our samples are independently is generated via a
Bernoulli randomized trial (1.8) with outcomes Yi = Yi(Wi) and

Yi(w) = α(w) +Xi · β(w) + εi(w),

E
[
εi(w)

∣∣Xi

]
= 0, Var

[
εi(w)

∣∣Xi

]
= σ2.

(1.15)

Under Bernoulli randomization, one can check that the observables (Xi, Yi, Wi)
are independently drawn from a distribution satisfying6

Yi = α(0) +Wi(α(1) − α(0)) +Xi · β(0) +WiXi ·
(
β(1) − β(0)

)
+ εi, (1.16)

with E
[
εi
∣∣Xi, Wi

]
= 0 and Var

[
εi
∣∣Xi, Wi

]
= σ2, i.e., the regression (1.13)

is in fact well specified. For simplicity, we will further assume that we are in
a balanced randomized trial with π = 50%, and (without loss of generality)
E [X] = 0.7

6Despite their similar appearance, we emphasize that (1.13) and (1.16) have completely
different meanings: The former describes an algorithm we run on data, while the latter
encodes structure we believe the data to satisfy.

7The assumption that E [X] = 0 is without loss of generality because all estimators we
will consider in this chapter are translation invariant. Of course, however, the analyst cannot
be allowed to make use of knowledge that E [X] = 0.
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As a warm-up, we first study the behavior of τ̂DM under this model as a
baseline; we will then be able to compare it with τ̂IREG. Given our general
result in Theorem 1.2 all that remains to be done is to spell out what VDM is
here; and, writing Var [X] = A, we we get (recall that we’re using π = 0.5 for
simplicity)

VDM =
Var [Yi(0)]

0.5
+

Var [Yi(1)]

0.5
= 2

(
Var

[
Xiβ(0)

]
+ σ2

)
+ 2

(
Var

[
Xiβ(1)

]
+ σ2

)
= 4σ2 + 2

∥∥β(0)

∥∥2

A
+ 2

∥∥β(1)

∥∥2

A

= 4σ2 +
∥∥β(0) + β(1)

∥∥2

A
+
∥∥β(0) − β(1)

∥∥2

A
,

(1.17)

where we used the notation ‖v‖2
A = v′Av for convenience.

Given that the linear regression model is well specified here, one should
expect that τ̂IREG improves over the performance of τ̂DM ; the question is by
how much. To study the regression estimator, it is helpful to note that the
interacted regression (1.13) is algorithmically equivalent to running separate
regressions for the treated and control groups and then taking differences of
their predictions on the full study sample:

Yi ∼ α(0) +Xi · β(0) for all i with Wi = 0,

Yi ∼ α(1) +Xi · β(1) for all i with Wi = 0,

τ̂IREG = α̂(1) − α̂(0) +X
(
β̂(1) − β̂(0)

)
.

Standard results about linear regression then imply that, under model (1.15)
(recall also that, here, we assume that E [X] = 0)

√
nw

((
α̂(w)

β̂(w)

)
−
(
α(w)

β(w)

))
⇒ N

(
0, σ2

(
1 0
0 A−1

))
, (1.18)

and that α̂(0), α̂(1), β̂(0), β̂(1) and X are all asymptotically independent. Then,
we can write

τ̂IREG − τ = α̂(1) − α(1)︸ ︷︷ ︸
≈N (0, σ2/n1)

− α̂(0) − α(0)︸ ︷︷ ︸
≈N (0, σ2/n0)

+ X
(
β(1) − β(0)

)︸ ︷︷ ︸
≈N

(
0,‖β(1)−β(0)‖2A/n

)
+X

(
β̂(1) − β̂(0) − β(1) + β(0)

)
︸ ︷︷ ︸

OP (1/n)

,
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which leads us to the central limit theorem

√
n (τ̂IREG − τ)⇒ N (0, VIREG) , VIREG = 4σ2 +

∥∥β(0) − β(1)

∥∥2

A
. (1.19)

After the dust settles we see that, under the linear model (1.15), the interacted
regression estimator also satisfies a central limit theorem, and

VIREG = VDM −
∥∥β(0) + β(1)

∥∥2

A
≤ VDM , (1.20)

i.e., the regression estimator usually has a better (and never has a worse)
asymptotic variance than the difference-in-means estimator.

Regression adjustments without linearity We showed above that if we
assume that the data is generated following a linear model then, as expected,
using an estimator that leverages linearity enables more accurate estimates of
the average treatment effect than one that doesn’t. A pessimist might expect
that these accuracy gains come at a cost, and that linear regression estimators
should face a trade-off whereby they do worse than the difference-in-means
estimator when linearity doesn’t hold. Surprisingly, however, no such tradeoff
exists. In randomized trials, τ̂IREG is always consistent for τ and satisfies
an asymptotic non-inferiority results of the type (1.20), even when the linear
regression underlying τ̂IREG may be misspecified.

We start by establishing a general central limit theorem for τ̂IREG below
under an assumption that samples are independently drawn from a population,
but no linearity assumption. Throughout, we will use the following notation,

µ(w)(x) = E
[
Yi(w)

∣∣Xi = x
]
, σ2

(w)(x) = Var
[
Yi(w)

∣∣Xi = x
]
, (1.21)

and assume that these quantities are well-defined and finite. The proof of
the following result relies on the Huber–White analysis of linear regression
whereby—regardless of linearity assumptions—linear regression consistently
the best linear projection coefficients(

α∗(w), β
∗
(w)

)
= argminα, β

{
E
[
(Yi(w)− α−Xi · β)2]} , (1.22)

which characterize the best available linear-in-Xi predictor under mean-squared
error.8 The argument below can also be extended to verify that standard
non-parametric tools for statistical inference—such as the bootstrap or the
jackknife—can be used to build asymptotically valid normal confidence inter-
vals for τ that are centered at τ̂IREG.

8Under will specification (1.15), the best linear projection coefficients match the param-
eters of the linear model, i.e., α∗(w) = α(w) and β∗(w) = β(w).
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Theorem 1.3. Under the conditions of Theorem 1.2, assume furthermore that
E [X ′X] is invertible. Then,
√
n (τ̂IREG − τ)⇒ N (0, VIREG) ,

VIREG = Var
[
Xi ·

(
β∗(1) − β∗(0)

)]
+

1

π
E
[(
Yi(1)− α∗(1) −Xi · β∗(1)

)2
]

+
1

1− π
E
[(
Yi(0)− α∗(0) −Xi · β∗(0)

)2
]
.

(1.23)

Proof. We again assume, without loss of generality, that E [Xi] = 0. From the
Huber–White analysis of linear regression, we then obtain that9

√
nw

((
α̂(w)

β̂(w)

)
−
(
α∗(w)

β∗(w)

))
⇒ N

(
0,

(
MSE∗(w) 0

0 · · ·

))
, where

MSE∗(w) = E
[(
Yi(w)−Xiβ

∗
(w) − α̂∗(w)

)2
] (1.24)

measures the mean-squared error of the best linear predictor. We do not write
down the lower corner of the asymptotic variance matrix as it is complicated
and does not contribute to first-order behavior; however, we do note that the
“· · · ” term is finite whenever E [X ′X] is invertible.

It now remains to expand out the regression estimator as given in (1.14),

τ̂IREG − τ = α̂(1) − α̂(0) − τ +X ·
(
β̂(1) − β̂(0)

)
.

We start by focusing on the contribution of the first 3 summands. One can im-
mediately verify that the average bias of the optimal linear predictions must be
0, i.e., given β∗(w), the intercept parameter must be α∗(w) = E

[
Yi(w)−Xi · β∗(1)

]
.

Thus, under our assumption that E [Xi] = 0, we must have α∗(w) = E [Yi(0)],
and so

α̂(1) − α̂(0) − τ = α̂(1) − α∗(1) −
(
α̂(0) − α∗(0)

)
.

The central limit theorem (1.24) then implies that

√
n
(
α̂(1) − α̂(0) − τ

)
⇒ N

(
0,
MSE∗(1)

π
+
MSE∗(0)

1− π

)
. (1.25)

Now, moving to the last summand, we note that

X ·
(
β̂(1) − β̂(0)

)
= X ·

(
β∗(1) − β∗(0)

)
+X ·

(
β̂(1) − β∗(1) − β̂(0) + β∗(0)

)
.

9For a recent review of asymptotics for linear regression under misspecification, see Buja
et al. [2019]; in particular (1.24) follows immediately from Proposition 7.1 of that paper
under the assumption that E [Xi] = 0.
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Again because E [Xi] = 0, the average X of the covariates is near zero with
asymptotically normal fluctuations of order 1/

√
n, and so

√
nX ·

(
β∗(1) − β∗(0)

)
⇒ N

(
0, Var

[
Xi ·

(
β∗(1) − β∗(0)

)])
. (1.26)

Furthermore, one can verify that the terms in (1.25) and (1.26) are asymptot-
ically uncorrelated and thus asymptotically independent.10

Finally, because both X and (thanks to (1.24)) β̂(0) − β∗(0) have fluctuations
on the order of 1/

√
n away from 0, their product can only have fluctuations of

order 1/n away from 0; we write this compactly as

X ·
(
β̂(1) − β∗(1) − β̂(0) + β∗(0)

)
= OP (1/n) .

Thus, by Slutsky’s lemma, this product term can be asymptotically ignored
since the leading-order terms (1.25) and (1.26) are of order 1/

√
n. Putting all

the pieces together recovers (1.23).

With Theorem 1.3 in hand, we are ready to revisit our comparison between
τ̂IREG reduces to τ̂DM . Does using a regression adjustment help improve pre-
cision, even without linearity assumptions? Here, we show that the answer is
yes for balanced RCTs, i.e., with π = 0.5, and under an assumption that the
unpredictable noise level is constant, σ2

(1)(x) = σ2
(0)(x) = σ2 for all x.11 Under

these assumptions, and writing Var [Xi] = A as before, we can expand out the
asymptotic variance from (1.23) as follows:12

VIREG = 2MSE∗(0) + 2MSE∗(1) +
∥∥β∗(1) − β∗(0)

∥∥2

A

= 4σ2 + 2 Var
[
µ(0)(X)−Xβ∗(0)

]
+ 2 Var

[
µ(1)(X)−Xβ∗(1)

]
+
∥∥β∗(1) − β∗(0)

∥∥2

A
.

Next, because Xβ∗(w) is the projection of µ(0)(X) onto the span of X, this

10Verifying this requires going into details of the proof of (1.24) and so we will not do
so here. The key fact leading to these quantities being asymptotically uncorrelated is
that, by the first-order condition for the best linear projection coefficients, we must have
Cov[Yi(w)− α∗(w) −Xi · β∗(w), Xi] = 0.

11The answer is also yes without these assumptions; verifying this is left as an exercise.
12For the third equality, we use the fact that Xβ∗(w) is the projection of µ(w)(X) on to the

linear span of the features X, and so Cov[µ(w)(X), Xβ∗(w)] = Var[Xβ∗(w)].
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further simplifies

. . . = 4σ2 + 2
(
Var

[
µ(0)(X)

]
− Var

[
Xβ∗(0)

])
+ 2

(
Var

[
µ(1)(X)

]
− Var

[
Xβ∗(1)

])
+
∥∥β∗(1) − β∗(0)

∥∥2

A

= 4σ2 + 2
(
Var

[
µ(0)(X)

]
+ Var

[
µ(1)(X)

])
+
∥∥β∗(1) − β∗(0)

∥∥2

A
− 2

∥∥β∗(0)

∥∥2

A
− 2

∥∥β∗(1)

∥∥2

A

= 4σ2 + 2
(
Var

[
µ(0)(X)

]
+ Var

[
µ(1)(X)

])
−
∥∥β∗(0) + β∗(1)

∥∥2

A

= VDM −
∥∥β∗(0) + β∗(1)

∥∥2

A
.

In other words, whether or not the true effect function µw(x) is linear, in-
teracted linear regression always either reduces or matches the asymptotic
variance of the difference-in-means estimator. Moreover, the amount of vari-
ance reduction scales by the amount by which linear regression in fact chooses
to fit the training data. A worst case for the regression adjustment is when
β∗(0) = β∗(1) = 0, i.e., when OLS asymptotically just does nothing; and in this
case τ̂IREG ends up being asymptotically equivalent to τ̂DM .

The role of regression adjustments in RCTs The individual treatment
effect ∆i = Yi(1) − Yi(0) is a central object of interest in causal inference.
These effects ∆i themselves are fundamentally unknowable; however, a large
RCT lets us consistently recover the average treatment effect τ = E [∆i]. In
this chapter, we presented and compared two approaches for doing so: The
difference-in-means estimator and the interacted regression adjustment. Per-
haps surprisingly we found that, when pre-treatment covariates are available,
the regression adjustment is asymptotically at least as precise as (and usually
more precise than) the difference-in-means estimator—and this result holds
whether or not the linear model underlying the regression adjustment is well
specified.

A key point about our analysis of the regression adjustment is that we
defined our target estimand, i.e., the average treatment effect τ = E [∆i], before
(and without) making any parametric (e.g., linear) modeling assumptions. The
average treatment effect was defined in terms of non-parametric counterfactual
reasoning. Linear regression was then used as an algorithmic tool to estimate τ ,
but linear modeling played no role in framing our original statistical question.

Finally, note that our regression adjustment estimator can effectively be
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viewed as an average difference in predictions,

τ̂IREG =
1

n

n∑
i=1

(α̂(1) +Xiβ̂(1)

)
︸ ︷︷ ︸

µ̂(1)(Xi)

−
(
α̂(0) +Xiβ̂(0)

)
︸ ︷︷ ︸

µ̂(0)(Xi)

 , (1.27)

where µ̂(w)(x) denotes linear regression predictions at x under treatment w.
Could we use other methods to estimate µ̂(w)(x) (e.g., deep nets, forests) rather
than linear regression? How would this affect asymptotic variance? Exercise 2
in Chapter 16 digs deeper on this.

1.3 Bibliographic notes

The potential outcomes model for causal inference was first advocated by Ney-
man [1923] and Rubin [1974]; see Imbens and Rubin [2015] for a modern text-
book treatment. One simple yet subtle aspect of the modeling framework used
here is our use of SUTVA 1.5 which, through notation, rules out many plausi-
ble difficulties Imbens and Rubin [2015, Chapter 1.6]. SUTVA precludes any
form of cross-unit interference (i.e., Wi cannot affect Yj for i 6= j). Further-
more, SUTVA implicitly requires that there is only 1 “version” of treatment;
and this assumption may become problematic if, e.g., we run a multi-site ran-
domized trial where different sites administer treatment in a slightly different
way. Thus, whenever invoked in an application, credibility of SUTVA should
be carefully assessed.

One distinction question that has received considerable attention in the
literature is whether or not one is willing to make any stochastic assumptions
on the potential outcomes. The setting without stochastic assumptions on
the potential outcomes is referred to as the Neyman model for randomization
inference or the finite-population model; whereas the setting with stochastic
assumptions is referred to the superpopulation or the IID-sampling model.
Here, we stated Theorem 1.1 under the Neyman model, but otherwise worked
under a superpopulation sampling model. We will take a closer look at the
Neyman model—and also revisit some of the results from this chapter—in the
context of our discussion of causal inference under cross-unit interference in
Chapter 12.

Statistical inference justified under the Neyman model is sometimes con-
sidered the highest standard of rigor in analyzing randomized trials because
all inferences are justified by randomization alone: The analyst does not need
to reason about how study participants were enrolled (and whether they were
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randomly drawn from a larger population) in order to rigorously apply results
proven under this model. The cost of working under the the Neyman model
establishing the sampling distribution of even fairly simple estimators requires
more intricate statistical analyses; see Li and Ding [2017] for recent results in
this setting. In contrast, studying randomized trials under the superpopulation
model generally enables simpler analyses via application of standard statistical
and econometric tools; and paves the way for more sophisticated semipara-
metric estimators in observational study settings. A further discussion and
comparison of the SATE (1.2) and ATE (1.3) estimands is given in [Imbens,
2004].

Lin [2013] presents a thorough discussion of the role of linear regression
adjustments in improving the precision of average treatment effect estimators,
and why using full intereactions as in (1.13) is often considered a best practice
relative to the simple regression (1.12). When the covariates Xi are generated
via one-hot-encoding of a discrete factor (i.e., Xi ∈ {0, 1}K with only one non-
zero entry per unit) the interacted regression adjustment estimator is equivalent
to (post-)stratification, which is also generally considered a best practice in
analyzing data from randomized experiments [Miratrix, Sekhon, and Yu, 2013].

Another feature of Lin [2013] is that he works under the Neyman model for
randomization inference, and shows that many of the insights from Theorem 1.3
in fact still holds in this setting. Wager et al. [2016] have a discussion of non-
parametric or high-dimensional regression adjustments in randomized trials
under superpopulations asymptotics that expands on the results covered here.
The study of high-dimensional regression adjustmentin the Neyman model is
an ongoing effort, with recent contributions from Bloniarz et al. [2016] and Lei
and Ding [2021].
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Chapter 2
Unconfoundedness and the
Propensity Score

Randomized controlled trials represent a powerful—yet somewhat rigid—class
of settings where we can identify and estimate causal effects. One of the over-
arching focuses of the literature on statistical causal inference (and also of this
book) is on ways in which we relax assumptions made in RCTs while preserv-
ing our ability to rigorously estimate causal effects, thus broadening the set of
problems where causal inference is possible.

In this chapter, we will consider a first, simple relaxation of the RCT as-
sumptions. We will no longer assume that the treatment Wi is randomized;
however, we will assume that we observe pre-treatment covariates Xi such
that, after conditioning on Xi, the treatment is as good as randomized. We
will then discuss a number of methods for estimating the average treatment
effect that exploit this “unconfoundedness” assumption, including ones based
on estimating the propensity score (i.e., the conditional probability of receiving
treatment). For simplicitly, throughout this chapter (and the next ones also)
we will work exclusively under the assumption that units are independently
sampled from a superpopulation.

Beyond a single randomized controlled trial The simplest way to move
beyond one RCT is to consider two RCTs. As a concrete example, supposed
that we are interested in giving teenagers cash incentives to discourage them
from smoking. A random subset of ∼ 5% of teenagers in Palo Alto, CA, and
a random subset of ∼ 20% of teenagers in Geneva, Switzerland are eligible for
the study.

Palo Alto Non-S. Smoker
Treat. 152 5

Control 2362 122

Geneva Non-S. Smoker
Treat. 581 350

Control 2278 1979
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Within each city, we have an RCT, and in fact readily see that the treatment
helps. However, looking at aggregate data is misleading, and it looks like the
treatment hurts; this is an example of what is sometimes called Simpson’s
paradox:

Palo Alto + Geneva Non-Smoker Smoker
Treatment 733 401

Control 4640 2101

Once we aggregate the data, this is no longer an RCT because Genevans are
both more likely to get treated, and more likely to smoke whether or not they
get treated. In order to get a consistent estimate of the ATE, we need to
estimate treatment effects in each city separately:

τ̂PA =
5

152 + 5
− 122

2362 + 122
≈ −1.7%,

τ̂GVA =
350

350 + 581
− 1979

2278 + 1979
≈ −8.9%

τ̂ =
2641

2641 + 5188
τ̂PA +

5188

2641 + 5188
τ̂GVA ≈ −6.5%.

What are the statistical properties of this estimator? How does this idea gen-
eralize to continuous x?

2.1 Stratified estimation

Formalizing the above discussion, suppose that we have covariates Xi that take
values in a discrete space Xi ∈ X , with |X | = p <∞. Suppose moreover that
the treatment assignment is random conditionally on Xi, (i.e., we have an RCT
in each group defined by a level of x):

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi = x, for all x ∈ X . (2.1)

Define the conditional average treatment effect as

τ(x) = E
[
Yi(1)− Yi(0)

∣∣Xi = x
]
. (2.2)

Then, the above suggests that ought to be able to estimate the ATE τ by
aggregating estimates of the conditional average treatment effect,

τ̂STRAT =
∑
x∈X

nx
n
τ̂(x), τ̂(x) =

1

nx1

∑
{Xi=x,Wi=1}

Yi −
1

nx0

∑
{Xi=x,Wi=0}

Yi, (2.3)

19



where nx = |{i : Xi = x}| and nxw = |{i : Xi = x, Wi = w}|. Another way to
look as the estimator in (2.3) is that we apply the difference-in-means estimator
after stratifying the sample using the covariates Xi; and for this reason we will
refer to it as the stratified estimator.

The following result verifies that the stratified estimator is in fact valid
under our assumptions. Remarkably, the asymptotic variance VSTRAT does
not depend on |X | = p, the number of groups, or equivalently the number
of “parameters” τ(x) estimated on the road to forming (2.3). As we’ll see in
the next chapter, this fact plays a key role in enabling efficient non-parametric
inference of average treatment effects in observational studies.

Theorem 2.1. Suppose that {Xi, Yi(0), Yi(1), Wi}
iid∼P for some distribution

P where Xi takes values in a finite cardinality set X and potential outcomes
have bounded second moments conditionally on Xi. Suppose furthermore that
both (2.1) and SUTVA hold, and that there is non-trivial treatment variation
for each x ∈ X , i.e., writing e(x) = P

[
Wi = 1

∣∣Xi = x
]
, we have 0 < e(x) < 1

for all x. Then, using notation as in (1.21),

√
n (τ̂STRAT − τ)⇒ N (0, VSTRAT )

VSTRAT = Var [τ(Xi)] + E

[
σ2

(1)(Xi)

e(Xi)
+

σ2
(0)(Xi)

1− e(Xi)

]
.

(2.4)

Proof. Write λ(x) = P [Xi = x] for the prevalence of each level of the covariate
x, and interpret λ̂(x) = nx/n as an estimator for it. We can then expand out
the stratified estimator as

τ̂STRAT =
∑
x∈X

λ̂(x)τ̂(x) =
∑
x∈X

λ(x)τ(x) +
∑
x∈X

(
λ̂(x)− λ(x)

)
τ(x)

+
∑
x∈X

λ(x) (τ̂(x)− τ(x)) +
∑
x∈X

(
λ̂(x)− λ(x)

)
(τ̂(x)− τ(x)) .

We now study each summand in the expression above. First, note that∑
x∈X

λ(x)τ(x) = E [τ(Xi)] = τ

is our target estimand. Using simple algebraic manipulations, the second term
can be re-expressed as

∑
x∈X

(
λ̂(x)− λ(x)

)
τ(x) =

1

n

n∑
i=1

(τ(Xi)− τ) ,
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and so the standard central limit theorem for IID averages implies that

√
n

(∑
x∈X

(
λ̂(x)− λ(x)

)
τ(x)

)
⇒ N (0, Var [τ(Xi)]) .

Next, our assumptions that {Xi, Yi(0), Yi(1), Wi}
iid∼P and that (2.1) hold im-

ply that Wi

∣∣Xi = x, Yi(0), Yi(1) ∼ Bernoulli (e(x)). Thus, by Theorem 1.2,

√
nx (τ̂(x)− τ(x))⇒ N

(
0,

σ2
(1)

e(x)
+

σ2
(0)(x)

1− e(x)

)
,

and the sampling errors in τ̂(x) are all asymptotically independent of each other
and of nx (and thus the second summand in our decomposition for τ̂STRAT ).
Thus, by Slutsky’s lemma,

∑
x∈X

λ(x) (τ̂(x)− τ(x))⇒ N

(
0,
∑
x∈X

λ(x)

(
σ2

(1)

e(x)
+

σ2
(0)(x)

1− e(x)

))
,

and so the sum of the second and third summands above has the limiting
distribution claimed in (2.4). Finally, our above argument also implies that(

λ̂(x)− λ(x)
)

(τ̂(x)− τ(x)) = OP
(

1

n

)
for all x ∈ X ,

and so the fourth summand is asymptotically negligible.

Continuous X and the propensity score Above, we considered a setting
where X is discrete with a finite number levels, and treatment Wi is as good
as random conditionally on Xi = x as in (2.1). In this case, we found that
we can still accurately estimate the ATE by aggregating group-wise treatment
effect estimates, and that the exact number of groups |X | = p does not affect
the accuracy of inference. However, if X is continuous (or the cardinality of X
is very large), this result does not apply directly—because we won’t be able to
get enough samples for each possible value of x ∈ X to be able to define τ̂(x)
as in (2.3).

In order to generalize our analysis beyond the discrete-X case, we’ll need
to move beyond literally trying to estimate τ(x) for each value of x by simple
averaging, and use a more indirect argument instead. To this end, we first need
to generalize the “RCT in each group” assumption. Formally, we just write
the same thing,

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi, (2.5)

21



although now Xi may be an arbitrary random variable, and interpretation of
this statement may require more care. Qualitatively, one way to think about
(2.5) is that we have measured enough covariates to capture any dependence
between Wi and the potential outcomes and so, given Xi, Wi cannot “peek” at
the {Yi(0), Yi(1)}. We call this assumption unconfoundedness.

The assumption (2.5) may seem like a difficult assumption to use in prac-
tice, since it involves conditioning on a continuous random variable. However,
as shown by Rosenbaum and Rubin [1983], this assumption can be made con-
siderably more tractable by considering the propensity score

e(x) = P
[
Wi = 1

∣∣Xi = x
]
. (2.6)

Statistically, a key property of the propensity score is that it is a balancing
score: If (2.5) holds, then in fact

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣ e(Xi), (2.7)

i.e., it actually suffices to control for e(X) rather than X to remove biases
associated with a non-random treatment assignment. We can verify this claim
as follows:

P
[
Wi = w

∣∣ {Yi(0), Yi(1)} , e(Xi)
]

=

∫
X
P
[
Wi = w

∣∣ {Yi(w)} , Xi = x
]
P
[
Xi = x

∣∣ {Yi(w)} , e(Xi)
]
dx

=

∫
X
P
[
Wi = w

∣∣Xi = x
]
P
[
Xi = x

∣∣ {Yi(w)} , e(Xi)
]
dx (unconf.)

=

{
e(Xi) if w = 1,

1− e(Xi) else.

The implication of (2.7) is that if we can partition our observations into groups
with (almost) constant values of the propensity score e(x), then we can consis-
tently estimate the average treatment effect via variants of τ̂STRAT .

Propensity stratification One instantiation of this idea is propensity strat-
ification, which proceeds as follows. First obtain an estimate ê(x) of the propen-
sity score via non-parametric regression, and choose a number of strata J .
Then:

1. Sort the observations according to their propensity scores, such that

ê (Xi1) ≤ ê (Xi2) ≤ . . . ≤ ê (Xin) . (2.8)
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2. Split the sample into J evenly size strata using the sorted propensity
score and, in each stratum j = 1, ..., J , compute the simple difference-
in-means treatment effect estimator for the stratum:

τ̂j =

∑bjn/Jc
j=b(j−1)n/Jc+1WiYi∑bjn/Jc
j=b(j−1)n/Jc+1Wi

−
∑bjn/Jc

j=b(j−1)n/Jc+1 (1−Wi)Yi∑bjn/Jc
j=b(j−1)n/Jc+1 (1−Wi)

. (2.9)

3. Estimate the average treatment by applying the idea of (2.3) across
strata:

τ̂PSTRAT =
1

J

J∑
j=1

τ̂j. (2.10)

The arguments described above immediately imply that, thanks to (2.7), τ̂PSTRAT
is consistent for τ whenever ê(x) is uniformly consistent for e(x) and the num-
ber of strata J grows appropriately with n; see Exercise 4 in Chapter 16 for
more details.

2.2 Inverse-propensity weighting

Another, algorithmically simpler way of exploiting unconfoundedness is via
inverse-propensity weighting (IPW). As before, we start by estimating
ê(x) via non-parametric regression; however, we then use the outputs of our
propensity model to build a re-weighted difference-in-means-type estimator

τ̂IPW =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
. (2.11)

The intuition behind IPW is that, if some units are very unlikely to get treated,
then we should up-weight them on the rare event where they do get treated
and down-weight them on the more common event where they don’t, etc., and
that this re-weighting weighting allows use to “undo” sampling bias caused by
variation in the propensity score.

The simplest way to analyze it is by comparing it to an oracle that actually
knows the propensity score:

τ̂ ∗IPW =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
. (2.12)

We start by establish asymptotic properties of the oracle IPW estimator below.
Once we’ve established consistency of τ̂ ∗IPW , it follows as an (almost) immediate
corollary that τ̂IPW is also consistent provided that ê(x) is consistent for e(x).
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Theorem 2.2. Suppose that {Xi, Yi(0), Yi(1), Wi}
iid∼P , that both (2.5) and

SUTVA hold, and that all moments used in the expression for VIPW ∗ below are
finite. Then, the oracle IPW estimator is unbiased, E [τ̂ ∗IPW ] = τ , and

√
n (τ̂ ∗IPW − τ)⇒ N (0, VIPW ∗)

VIPW ∗ = Var [τ(Xi)] + E

[(
µ(0)(Xi) + (1− e(Xi))τ(Xi)

)2

e(Xi)(1− e(Xi))

]

+ E

[
σ2

(1)(Xi)

e(Xi)
+

σ2
(0)(Xi)

1− e(Xi)

]
.

(2.13)

Proof. We start by checking the unbiasedness statement as follows:

E [τ̂ ∗IPW ] = E
[
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

]
(IID)

= E
[
WiYi(1)

e(Xi)
− (1−Wi)Yi(0)

1− e(Xi)

]
(SUTVA)

= E
[
E
[
WiYi(1)

e(Xi)

∣∣Xi

]
− E

[
(1−Wi)Yi(0)

1− e(Xi)

∣∣Xi

]]
= E

[
E
[
Wi

∣∣Xi

]
E
[
Yi(1)

∣∣Xi

]
e(Xi)

−
E
[
1−Wi

∣∣Xi

]
E
[
Yi(0)

∣∣Xi

]
1− e(Xi)

]
(unconf.)

= E [Yi(1)− Yi(0)] = τ.

Next, under our IID sampling assumption, (2.13) follows immediately from the
central limit theorem for IID averages with

VIPW ∗ = Var

[
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

]
,

provided this variance is finite. It remains to derive the claimed alternative ex-
pression for VIPW ∗ . To this end, building on notation from (1.21), we introduce
an auxiliary function

c(x) = µ(0)(x) + (1− e(x))τ(x),

and write εi(w) = Yi(w)− µ(w)(Xi). Given these preliminaries, we expand out

WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

=
Wi

(
µ(1)(Xi) + εi(1)

)
e(Xi)

−
(1−Wi)

(
µ(0)(Xi) + εi(0)

)
1− e(Xi)

= τ(Xi) +

(
Wi

e(Xi)
− 1−Wi

1− e(Xi)

)
c(Xi) +

Wiεi(1)

e(Xi)
− (1−Wi)εi(0)

1− e(Xi)
.
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Furthermore, E
[
Wi/e(Xi)− (1−Wi)/(1− e(Xi))

∣∣Xi

]
= 0 by definition of

the propensity score, and E
[
εi(w)

∣∣Xi, Wi

]
= 0 by unconfoundedness, so

Var

[
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

]
= Var [τ(Xi)]

+ E

[((
Wi

e(Xi)
− 1−Wi

1− e(Xi)

)
c(Xi)

)2
]

+ E

[(
Wiεi(1)

e(Xi)
− (1−Wi)εi(0)

1− e(Xi)

)2
]
.

The claimed expression for VIPW ∗ follows by simplifying the one above.

One noteworthy assumption made seemingly in passing above is that all
moments used in (2.13) are well-defined and finite. This is, however, a highly
non-trivial assumption. If the potential outcomes are uniformly bounded, then
this condition is essentially equivalent to assuming that

E [1/ (e(Xi)(1− e(Xi)))] <∞. (2.14)

Meanwhile if we simply assume that the potential outcomes have finite second
moments then we need to assume something stronger, e.g., there exists an η > 0
for which

η ≤ e(x) ≤ 1− η for all x ∈ X . (2.15)

These assumptions are generally known as overlap assumptions, and codify
the requirement that there must be non-trivial randomness in treatment as-
signment conditionally on x. We refer to (2.14) as weak overlap, and (2.15)
as strong overlap. Qualitatively an overlap-type assumption must in gen-
eral be made for non-parametric treatment effect estimation to be possible: If
treatment assignment Wi is perfectly predictable from Xi, then there is no ac-
tual randomness in treatment assignment, and so treatment effect estimation
justified by treatment randomization cannot be possible.

How accurate is inverse-propensity weighting? We established above
that IPW is unbiased and asymptotically normal when implemented with the
true propensity scores, and consistent with estimated propensity scores. This
is of course a nice result to have given the simple functional form of the IPW
estimator. But do these results imply that IPW is any good?

To get a benchmark for our results about IPW, it is helpful to re-visit the
setting of the beginning of this lecture where X is discrete, in which case we
can use the result in Theorem 2.1 for τ̂STRAT as a point of comparison. When

25



propensity scores are known, both τ̂ ∗IPW and τ̂STRAT are asymptotically normal,
and from (2.4) and (2.13) we see that

VIPW ∗ = VSTRAT + E

[(
µ(0)(Xi) + (1− e(Xi))τ(Xi)

)2

e(Xi)(1− e(Xi))

]
. (2.16)

Thus, unless µ(0)(Xi)+(1−e(Xi))τ(Xi) is zero almost surely, τ̂ ∗IPW has a strictly
worse asymptotic variance than τ̂STRAT . Meanwhile, when propensity scores
are not known, we here only proved a consistency result for τ̂IPW (no central
limit theorem), and so we cannot even make a proper comparison. Thus, at
first glance, a comparison of Theorems 2.1 and 2.2 makes the behavior of IPW
seem somewhat disappointing.

However, on closer look, the picture gets more complicated: It turns out
that τ̂STRAT can actually be understood as an implementation of the IPW
estimator with a specific choice of estimated propensity score ê(x). In the
setting of (2.3) where τ̂STRAT is well defined, we have:

τ̂STRAT =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
, ê(x) =

nx1

nx
. (2.17)

Thus, when X is discrete, it turns out that an instance of a feasible IPW
estimator, namely τ̂STRAT , is actually more precise than the “oracle” IPW
estimator (see also Exercise 1 in Chapter 16).13 Understanding and resolving
this seeming paradox lies will be at the heart of understanding how to design
accurate estimators of the average treatment effect under unconfoundedness—
including with continuous covariates.

Randomized and observational studies One nuance we glossed over is
that there are two conceptually distinct ways that one could end up with po-
tential outcomes satisfying (2.5). The first option is that the data was gen-
erated by an experiment with variable treatment propensities: Nature gen-
erated {Xi, Yi(0), Yi(1)} ∼ P , and then an experimenter randomly assigned

13The result stated here should not be over-generalized. We have shown that in one very
specific setting—when Xi has discrete support and we use a saturated (and thus trivially
well specified) propensity model—then the feasible IPW estimator can outperform the oracle
IPW estimator. This result should not be taken to mean that feasible IPW generally beats
oracle IPW; and the conditions under which this happens are not present in many impor-
tant applications (unless, of course, Xi genuinely has low-cardinality, discrete support). In
Chapter 3, we will discuss much more robust—and algorithmically generalizable—ways to
address the excess asymptotic variance of oracle IPW.
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treatments Wi ∼ Bernoulli(e(Xi)) for some function e(·) of the covariates. Un-
der this setting, the experimenter knows that (2.5) must hold, because they
themselves generated treatment in a way that satisfies the assumption. Es-
sentially, the experimenter is running the same Bernoulli trial as considered in
(1.8), except with randomization probabilities that vary with the Xi. Although
covariate-dependent randomization probabilities require statistical accommo-
dation, such experiments are conceptually akin to the ones discussed in Chapter
1—and provide comparably strong, gold-standard causal evidence.

Example 2. Arceneaux, Gerber, and Green [2006] run a randomized study to
measure the effectiveness of voter mobilization phone calls in getting people
to vote in midterm elections. The study is run in two states, Michigan and
Iowa, and randomization is stratified by both state and by competitiveness of
the congressional district, with per-stratum randomization probabilities vary-
ing from 1% to 15%. This is a randomized controlled trial; however, properly
accounting for variation in the randomization probabilities (e.g., via propen-
sity stratification) is required for a valid analysis, and simply taking a global
difference in means would be prone to Simpson’s paradox.

The second option is that there was no experiment: Nature generated
{Xi, Yi(0), Yi(1), Wi} ∼ P , and we simply posit that (2.5) holds. This marks a
much bigger departure from the setting of Chapter 1. There is no analyst who
ran an experiment; rather, we posit that data is generated as though someone
had run the experiment described in the previous chapter. Such settings are
referred to as natural experiments or observational study designs. Because no
experiment was actually run, the assumption (2.5) can always be challenged in
observational studies—and as such the resulting causal evidence is sometimes
considered more tentative than evidence obtained via randomized experiments.

Example 3. LaLonde [1986] considers evaluating the benefits from a jobs
training program by comparing post-intervention earnings for people enrolled
in a pilot program to members of the general public who were not enrolled
in the program. This is not a randomized study design, and members of the
general public differ from those in the pilot program along a number of pre-
intervention metrics. The initial assessment of LaLonde [1986] regarding the
possibility of getting credible causal estimates out of such observational data
was pessimistic. However, in later work, Dehejia and Wahba [1999] showed
that approaches that start by modeling the propensity score (i.e., here, the
probability of joining the pilot program given pre-intervention characteristics)
showed more promising behavior,14 and were often able to match experimental
benchmarks.

14One question that has received substantial attention in subsequent discussions of the
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Another major practical difference between randomized trials with covariate-
dependent randomization versus observational studies is that, in the former
case, the treatment propensities e(Xi) are usually known (because they were
chosen by the experimenter), and so methods such as oracle IPW with guar-
antees as in Theorem 2.2 are available. In contrast, in the observational study
setting, treatment propensities need to be estimated, and thus robustness of
methods to errors in the propensity scores is important—particularly in set-
tings as below where propensity scores are hard to estimate accurately. As of
now, we have not yet seen estimators that, in a setting with continuous Xi, can
take in estimated propensity scores and output asymptotically normal average
treatment effect estimates with 1/

√
n-scale errors. In the next chapter, we will

present an improvement to IPW that can achieve asymptotic normality even
with estimated propensity scores.

Example 4. Ross et al. [2024] use electronic health record data from the Vet-
erans’ Administration to estimate the benefits of psychiatric hospitalization
on suicide prevention among patients with a recent suicide attempt of suicide
ideation. There is no randomization, and hospitalized versus non-hospitalized
patients differ on pre-treatment characteristics. The authors argue that af-
ter controlling for rich medical history available through the electronic health
records, it is plausible for unconfoundedness to hold, and proceed to use propen-
sity score methods. However, given that the pre-treatment is high-dimensional
with complex structure, it is necessary to use a machine learning approach to
get reasonable propensity score estimates—and any down-stream used of these
propensity scores should be robust to likely estimation errors in this step.

2.3 Bibliographic notes

The central role of the propensity score in estimating causal effects was first
emphasized by Rosenbaum and Rubin [1983], while associated methods for
estimation such as propensity stratification are discussed in Rosenbaum and
Rubin [1984]. Hirano, Imbens, and Ridder [2003] provide a detailed discussion

work of LaLonde [1986] is how we should properly “control for” pre-intervention covariates
in an observational study setting. In informal econometric practice, when an analyst says
they have controlled for a set of covariates, they mean that they’ve run a regression where
they’ve added the covariates as predictors; e.g., in our setting, they might have sought to
estimate a treatment effect via the τ̂ coefficient from the regression Yi ∼ α+Wiτ+Xi ·β. This
type of regression, however, is not justified by the unconfoundedness assumption (2.5) and,
unlike IPW or other propensity-score methods, is not generally consistent for the average
treatment effect under unconfoundedness. The unconfoundedness assumption (2.5) is non-
parametric; and thus using it requires adjusting for Xi non-parametrically.
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of the asymptotics of IPW-style estimators that expands on the result given
in Theorem 2.1. In particular they present conditions with continuous Xi

under which IPW with non-parametrically estimated propensity scores can
outperform oracle IPW.

Another popular way of leveraging the propensity score in practice is propen-
sity matching, i.e., estimating treatment effects by comparing pairs of units
with similar values of ê(Xi). For a some recent discussions of matching in
causal inference, see Abadie and Imbens [2006, 2016], Diamond and Sekhon
[2013], Zubizarreta [2012], and references therein.
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Chapter 3
Doubly Robust Methods

Inverse-propensity weighting (IPW) is a simple and transparent approach to
average treatment effect estimation under unconfoundedness. However, as seen
in the previous chapter, the large-sample properties of IPW are not particularly
good in general, and the way estimation error in the propensity scores affects
accuracy of IPW is complex. Our goal here is to move beyond the limitations of
IPW and to discuss doubly robust methods, which provide a general recipe for
building robust and asymptotically optimal treatment effect estimators under
unconfoundedness, and enable us to rigorously and flexibly handle estimation
error in the propensity score.15

Throughout this chapter, we will seek to estimate the average treatment
effect τ = E [Yi(1)− Yi(0)] under the following statistical setting:

Basic setting: SUTVA, unconfoundedness and strong overlap There
is a distribution P that generates a stream of tuples {Xi, Yi(0), Yi(1), Wi}

iid∼P
taking values in X × R × R × {0, 1}. We get to observe (Xi, Yi, Wi) where
Yi = Yi(Wi) (SUTVA). We are not necessarily in a randomized controlled trial;
however, we have unconfoundedness, i.e., treatment assignment is as good as
random conditionally on the features Xi:

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi, (3.1)

Potential outcomes have bounded second moments, E [Y 2
i (w)] <∞. Strong

overlap holds, i.e., for some η > 0,

η ≤ e(x) ≤ 1− e(x) for all x ∈ X . (3.2)

We write e(x) = P
[
Wi = 1

∣∣Xi = x
]

for the propensity score, and also use
notation µ(w)(x) = E

[
Yi(w)

∣∣Xi = x
]

and σ2
(w)(x) = Var

[
Yi(w)

∣∣Xi = x
]
.

15In particular, we will be able to handle machine-learning based propensity score estimates
as came up in Example 4.

30



Two characterizations of the ATE In the previous chapter, we saw that
the ATE can be characterized via IPW:

τ = E [τ̂ ∗IPW ] , τ̂ ∗IPW =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
. (3.3)

However, τ can also be characterized in terms of the conditional response sur-
faces µ(w)(x): Under unconfoundedness (3.1),

τ(x) := E
[
Yi(1)− Yi(0)

∣∣Xi = x
]

= E
[
Yi(1)

∣∣Xi = x
]
− E

[
Yi(0)

∣∣Xi = x
]

= E
[
Yi(1)

∣∣Xi = x, Wi = 1
]
− E

[
Yi(0)

∣∣Xi = x, Wi = 0
]

(unconf)

= E
[
Yi
∣∣Xi = x, Wi = 1

]
− E

[
Yi
∣∣Xi = x, Wi = 0

]
(SUTVA)

= µ(1)(x)− µ(0)(x),

and so τ = E
[
µ(1)(Xi)− µ(0)(Xi)

]
. Thus there also exists a simple and con-

sistent (but not necessarily optimal) non-parametric regression estima-
tor for τ : First estimate µ(0)(x) and µ(1)(x) non-parametrically, and then set
τ̂REG = n−1

∑n
i=1(µ̂(1)(Xi)− µ̂(0)(Xi)).

Augmented IPW Given that the average treatment effect can be estimated
in two different ways, i.e., by first non-parametrically estimating e(x) or by
first estimating µ(0)(x) and µ(1)(x), it is natural to ask whether it is possible to
combine both strategies. This turns out to be a very good idea, and yields the
augmented IPW (AIPW) estimator of Robins, Rotnitzky, and Zhao [1994]:

τ̂AIPW =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

+Wi

Yi − µ̂(1)(Xi)

ê(Xi)
− (1−Wi)

Yi − µ̂(0)(Xi)

1− ê(Xi)

)
.

(3.4)

Qualitatively, AIPW can be seen as first making a best effort attempt at τ
by estimating µ(0)(x) and µ(1)(x); then, it deals with any biases of the µ̂(w)(x)
by applying IPW to the regression residuals. Statistically, it turns out that
AIPW not only inherits robustness properties from both the regression and
IPW estimators—it improves on both by (in a sense made rigorous below)
using IPW to mitigate errors in the regression estimator and vice-versa.

Weak double robustness A first, simple-to-understand property of AIPW
is the following “weak” double robustness property:16 AIPW is consistent if

16In the literature, what we here refer to as weak double robustness is often simply referred
to as double robustness [Bang and Robins, 2005].
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either the µ̂(w)(x) are consistent or ê(x) is consistent. To see this, first consider
the case where µ̂(w)(x) is consistent, i.e., µ̂(w)(x) ≈ µ(w)(x). Then,

τ̂AIPW =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

)
︸ ︷︷ ︸

the regression estimator

+
1

n

n∑
i=1

(
Wi

ê(Xi)

(
Yi − µ̂(1)(Xi)

)
− 1−Wi

1− ê(Xi)

(
Yi − µ̂(0)(Xi)

))
︸ ︷︷ ︸

≈ mean-zero noise

,

because E
[
Yi − µ̂(Wi)(Xi)

∣∣Xi, Wi

]
≈ 0 under unconfoundedness. Thus even if

we use inconsistent propensity score weights 1/ê(Xi) and 1/(1 − ê(Xi)), they
are multiplied by roughly mean-zero error terms and so asymptotically they do
not bias the estimator, and τ̂AIPW remains consistent.

Conversely, now suppose that ê(x) is consistent, i.e., ê(x) ≈ e(x). Then,

τ̂AIPW =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
︸ ︷︷ ︸

the IPW estimator

+
1

n

n∑
i=1

(
µ̂(1)(Xi)

(
1− Wi

ê(Xi)

)
− µ̂(0)(Xi)

(
1− 1−Wi

1− ê(Xi)

))
︸ ︷︷ ︸

≈ mean-zero noise

,

because E
[
1−Wi/ê(Xi)

∣∣Xi

]
≈ 0. Thus, even if we use inconsistent regres-

sion adjustments µ̂(w)(Xi), they will be multiplied by roughly mean-zero noise
terms that asymptotically cancel their contribution. Thus τ̂AIPW inherits the
consistency of τ̂IPW under unconfoundedness.

That being said, although the (weak) double robustness of AIPW is is a
nice property to have, its importance should not be overstated. Weak double
robustness only guarantees consistency of τ̂AIPW , whereas in most treatment
effect estimation applications we also care about rates of convergence and con-
fidence intervals. Furthermore, one could also argue that, in a modern setting,
one should expect practitioners to use appropriate non-parametric estimators
for both µ(w)(x) and e(x) that are consistent for each. In this case both τ̂REG
and τ̂IPW would already be consistent on their own, and so the above weak
double robustness statement (i.e., consistency of τ̂AIPW ) doesn’t add anything.

Strong double robustness There is also a much more interesting and useful
class of “strong” double robustness results for AIPW that quantify the weaker
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consistency statement given above. At a high level, strong double robustness is
a claim that results of the following type exist: If we use estimators µ̂(w)(x) and
ê(x) that are both consistent with root-mean squared error (RMSE) decaying
faster than n−αµ and n−αe respectively, and if furthermore αµ +αe ≥ 1/2, then

√
n (τ̂AIPW − τ)⇒ N (0, VAIPW ) ,

VAIPW = Var [τ(Xi)] + E
[
σ2

0(Xi)

1− e(Xi)

]
+ E

[
σ2

1(Xi)

e(Xi)

]
.

(3.5)

The reason this meta-result holds is that, in general, if the RMSE of µ̂(w)(x)
decays faster than n−αµ and the RMSE of ê(x) decays faster than n−αe , then the
bias of AIPW decays faster than n−(αµ+αe); and, in particular, if αµ+αe ≥ 1/2
then the bias is lower-order on the 1/

√
n-scale. What’s remarkable about this

result is that, under the same conditions, the bias of the regression estimator
would in general only be bounded to order n−αµ and that of IPW to order
n−αe ; and so the AIPW construction succeeds in making bias substantially
smaller than what either the regression or IPW estimators could achieve on
their own.17

The statement given above is not a theorem—rather it’s a meta-result, and
a blueprint for many types of results that hold under further technical assump-
tions. Below, we will discuss one specific way of constructing AIPW estimators,
coined as double machine learning by Chernozhukov et al. [2018], and establish
conditions under which it satisfies (3.5). Note that double machine learning is
not the only way to get results of this type; and in fact results that are stronger
than (3.5) can be obtained in some specialized settings. Thus, our presentation
below should be seen as a first step—and not the end point—in understanding
and leveraging strong double robustness of AIPW.

3.1 Double machine learning

Our study of strong double robustness for AIPW starts by considering the
behavior of an “oracle” AIPW estimator that is constructed in terms of true
(rather than estimated) values of the conditional regression surfaces and the

17An interesting special case in which this condition holds is when αµ, αe = 1/4, i.e.,
µ̂(w)(x) and ê(x) are both o(1/ 4

√
n)-consistent in RMSE. In general, parametric models are

O(1/
√
n)-consistent in RMSE; and thus the result (3.5) can accommodate a setting where

µ̂(w)(x) and ê(x) converge an order of magnitude slower than the parametric rate.

33



propensity score:

τ̂ ∗AIPW =
1

n

n∑
i=1

Γi

Γi = µ(1)(Xi)− µ(0)(Xi) +Wi

Yi − µ(1)(Xi)

e(Xi)
− (1−Wi)

Yi − µ(0)(Xi)

1− e(Xi)
.

(3.6)

Proposition 3.1. Under the basic setting with SUTVA, unconfoundedness and
strong overlap given at the beginning of this chapter, the oracle AIPW estimator
has the limit distribution given in (3.5), i.e.,

√
n (τ̂ ∗AIPW − τ)⇒ N (0, VAIPW ) . (3.7)

Proof. The fact that the oracle AIPW estimator is unbiased follows from the
discussions used to establish weak double robustness of AIPW. Furthermore,
the oracle estimator is an average of IID terms, so the standard central limit
theorem immediately implies that

√
n (τ̂ ∗AIPW − τ) ⇒ N (0, Var [Γi]). Finally,

under unconfoundedness, we can check that

Var [Γi] = Var
[
µ(1)(Xi)− µ(0)(Xi)

]
+ E

[(
Wi

Yi − µ(1)(Xi)

e(Xi)

)2
]

+ E

[(
(1−Wi)

Yi − µ(0)(Xi)

1− e(Xi)

)2
]
,

(3.8)

which matches the expression for VAIPW given in (3.5). Notice in particular
that, by the overlap and bounded-second-moment assumptions in our basic
setting, all terms in (3.8) are finite.

Given this result, establishing (3.5) reduces to showing that, provided
µ̂(w)(·) and ê(·) converge fast enough,

√
n (τ̂AIPW − τ̂ ∗AIPW )→p 0, (3.9)

i.e., the feasible AIPW estimator is asymptotically equivalent to the oracle.
The fact that proving results of the type (3.9) is possible under reasonable
assumptions is not to be taken for granted, and is a consequence of AIPW
having a strong double robustness property. Other estimators we’ve discussed,
such as the IPW and regression adjustment estimators, do not in general satisfy
this type of oracle equivalence property.
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Cross-fitting In order to establish the oracle equivalence result (3.9), it is
helpful to consider the following minor algorithmic modification of AIPW using
a technique called cross-fitting. At a high level, cross-fitting uses cross-fold
estimation to avoid bias due to overfitting; the motivation behind doing so is
closely related to the reason why we often use cross-validation when estimating
the predictive accuracy of an estimator.

Cross-fitting first splits the data (at random) into two halves I1 and I2,
and then uses an estimator18

τ̂AIPW =
|I1|
n

τ̂I1 +
|I2|
n

τ̂I2 , τ̂I1 =
1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi)− µ̂I2(0)(Xi)

+Wi

Yi − µ̂I2(1)(Xi)

êI2(Xi)
− (1−Wi)

Yi − µ̂I2(0)(Xi)

1− êI2(Xi)

)
,

(3.10)

where the µ̂I2(w)(·) and êI2(·) are estimates of µ(w)(·) and e(·) obtained using
only the half-sample I2, and τ̂I2 is defined analogously (with the roles of I1

and I2 swapped). In other words, τ̂I1 is a treatment effect estimator on I1 that
uses I2 to estimate its non-parametric components, and vice-versa.

What cross-fitting buys us is that, e.g., if i ∈ I1 and Wi = 0, then Yi −
µ̂I2(0)(Xi) is an “honest” regression residual that cannot be artificially shrunk
via overfitting. As seen below, by creating such honest residuals, cross-fitting
enables us to establish results of the type (3.9) without needing to make detailed
assumptions about the algorithms used to estimate µ̂(w)(x) and ê(x).

Theorem 3.2. Given our basic setting with SUTVA, unconfoundedness and
strong overlap, suppose that we construct τ̂AIPW using cross-fitting with esti-
mators satisfying, for w ∈ {0, 1} and also with the roles of I1 and I2 swapped,

n−2αµ
1

|I1|
∑
i∈I1

(
µ̂I2(w)(Xi)− µ(w)(Xi)

)2

→p 0,

n−2αe
1

|I1|
∑
i∈I1

(
1

êI2(Xi)
− 1

e(Xi)

)2

→p 0,

(3.11)

for some constants with αµ, αe ≥ 0 and αµ + αe ≥ 1/2. Then (3.9) and thus
also (3.5) hold.

18Throughout the rest of the book, whenever AIPW is discussed, we’ll implicitly be using
cross-fitting unless specified otherwise. Cross-fitting is also recommended in practice by a
number of authors, and is implemented in several software packages for causal inference.
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Proof. Note that, because τ̂ ∗AIPW doesn’t rely on estimated quantities and so
is unaffected by cross-fitting, we can write the oracle AIPW estimator as

τ̂ ∗AIPW =
|I1|
n

τ̂I1,∗ +
|I2|
n

τ̂I2,∗

analogously to (3.10). Moreover, we can decompose τ̂I1 itself as

τ̂I1 = m̂I1(1) − m̂
I1
(0),

m̂I1(1) =
1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi) +Wi

Yi − µ̂I2(1)(Xi)

êI2(Xi)

)
,

(3.12)

etc., and define m̂I1,∗(0) and m̂I1,∗(1) analogously. Given this setup, in order to verify
(3.9), it suffices to show that

√
n
(
m̂I1(1) − m̂

I1,∗
(1)

)
→p 0. (3.13)

The proof can then be completed by carrying out the same argument for dif-
ferent folds and treatment statuses.

To this end, we decompose the error term in (3.13) as follows:

m̂I1(1) − m̂
I1,∗
(1)

=
1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi) +Wi

Yi − µ̂I2(1)(Xi)

êI2(Xi)
− µ(1)(Xi)−Wi

Yi − µ(1)(Xi)

e(Xi)

)

=
1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

))
+

1

|I1|
∑
i∈I1

Wi

((
Yi − µ(1)(Xi)

)( 1

êI2(Xi)
− 1

e(Xi)

))
− 1

|I1|
∑
i∈I1

Wi

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)( 1

êI2(Xi)
− 1

e(Xi)

))
We can then verify that these terms are small for different reasons.

For the first term, we intricately use the fact that, thanks to our cross-fitting
construction, µ̂I2(w) can effectively be treated as deterministic when considering
terms on I1. We first observe that, conditionally on I2 and the observed
covariate values, this term can be treated as average of independent mean-zero
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terms, and

E

( 1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

)))2 ∣∣∣ I2, {Xi}


= Var

[
1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

)) ∣∣∣ I2, {Xi}

]

=
1

|I1|2
∑
i∈I1

E

[(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2
(

1− Wi

e(Xi)

)2 ∣∣∣ I2, {Xi}

]

=
1

|I1|2
∑
i∈I1

1− e(Xi)

e(Xi)

(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2

≤ 1− η
η

1

|I1|2
∑
i∈I1

(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2

= oP

(
1

n1+2αµ

)
.

(3.14)

The 3 equalities above are all due to cross-fitting, while the two inequalities
are due to overlap (3.2) and consistency (3.11). Thus, because αµ ≥ 0, we
can apply Chebyshev’s inequality to verify that the first summand itself is
oP (1/

√
n), i.e., as claimed it is negligible in probability on the 1/

√
n-scale.

The second summand in our decomposition above can also be bounded by a
similar argument.

Finally, for the last summand, we use a Cauchy-Schwarz argument:19

1

|I1|
∑

{i:i∈I1,Wi=1}

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)( 1

êI2(Xi)
− 1

e(Xi)

))

≤
√

1

|I1|
∑

{i:i∈I1,Wi=1}

(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2

×

√√√√ 1

|I1|
∑

{i:i∈I1,Wi=1}

(
1

êI2(Xi)
− 1

e(Xi)

)2

= oP

(
1

nαµ+αe

)
,

(3.15)

by risk decay (3.11). Thus, we find that this term is also oP (1/
√
n), i.e., as

claimed it is negligible in probability on the 1/
√
n-scale.

19Note that this application of the Cauchy-Schwarz is somewhat loose. There exist
results—albeit with much stronger assumptions—that are able to weaken the rate condi-
tion (3.11) by using a stronger argument here.
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Condensed notation We will be encountering cross-fit estimators frequently
throughout the rest of this book. From now on, we’ll use the following nota-
tion: We define the data into K folds (above, K = 2), and compute estimators

µ̂
(−k)
(w) (x), etc., excluding the k-th fold. Then, writing k(i) as the mapping that

takes an observation and puts it into one of the k folds, we can write

τ̂AIPW =
1

n

n∑
i=1

(
µ̂

(−k(i))
(1) (Xi)− µ̂(−k(i))

(0) (Xi)

+Wi

Yi − µ̂(−k(i))
(1) (Xi)

ê(−k(i))(Xi)
− (1−Wi)

Yi − µ̂(−k(i))
(0) (Xi)

1− ê(−k(i))(Xi)

)
.

(3.16)

Note that the result in Theorem 3.2 applies equally well with any finite number
K of cross-fitting folds (and the same proof also works modulo updates to the
notation).

Confidence intervals It is also important to be able to quantify uncertainty
of treatment effect estimates. Thankfully, with AIPW, this turns out to be
reasonably straight-forward. In the proof of Proposition 3.1, we saw that VAIPW
matches the variance of the summands Γi used to define the oracle AIPW
estimator (3.6). This suggests using the following feasible variance estimate:20

V̂AIPW =
1

n− 1

n∑
i=1

(
Γ̂i − τ̂AIPW

)
,

Γ̂i = µ̂
(−k(i))
(1) (Xi)− µ̂(−k(i))

(0) (Xi)

+Wi

Yi − µ̂(−k(i))
(1) (Xi)

ê(−k(i))(Xi)
− (1−Wi)

Yi − µ̂(−k(i))
(0) (Xi)

1− ê(−k(i))(Xi)
.

(3.17)

The proof of Theorem 3.2 then implies that, under our assumptions, V̂AIPW →p

VAIPW . We can thus produce level-α confidence intervals for τ as

τ ∈
(
τ̂AIPW ± Φ−1

(
1− α

2

) 1√
n

√
V̂AIPW

)
, (3.18)

where Φ(·) is the standard Gaussian CDF, and these will achieve coverage with
probability 1−α in large samples. Similar argument can also be used to justify
inference via resampling methods as in Efron [1982].

20Here we make the usual t-distribution degrees-of-freedom adjustment and divide by n−1;
however, all statements below would also hold when dividing by n instead.
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What if the propensity score is known? One special case worth con-
sidering is, what happens when the propensity score is known, and we im-
plement the cross-fit AIPW estimator (3.16) with the true propensity scores
ê−k(i)(Xi) = e(Xi). In this case Theorem 3.2 immediately implies the following.

Corollary 3.3. Under our basic setting with SUTVA, unconfoundedness and
strong overlap, suppose that we know the true propensity scores and use them
to construct the AIPW estimator. Suppose moreover that

1

|I1|
∑
i∈I1

(
µ̂I2(w)(Xi)− µ(w)(Xi)

)2

→p 0, (3.19)

for w ∈ {0, 1} and for with the roles of I1 and I2 swapped. Then (3.9) and
(3.5) hold; and furthermore τ̂AIPW is exactly unbiased, E [τ̂AIPW ] = τ .

Proof. The CLT statement follows from applying Theorem 3.2 with αµ = 0 and
αe = +∞. The unbiasedness claim follows by noting that, in the decomposition
below (3.13), the second and third terms disappear when the true propensity
scores are used, while the first term is mean-zero.

This result is remarkable in that it shows that, if we use AIPW with true
propensity scores, then AIPW will achieve the target asymptotic behavior (3.5)
as long as we use any regression adjustment that is consistent in the extremely
weak sense (3.19). In particular, no rates of convergence are required.

It is well known that there are several machine learning methods, including
k-nearest neighbors, that are universally consistent, i.e., they achieve error
guarantees (3.19) for any IID data-generating distribution, without any as-
sumptions on the joint distribution of Xi and Yi(w) other than E [Y 2

i (w)] <∞
[Stone, 1977]. Corollary 3.3 implies that if we run AIPW implemented with an
universally consistent µ̂(w)(x) estimator and the true propensity scores, then it
always satisfies (3.5) under our basic setting.

Corollary 3.3 also provides a practical resolution to the apparent paradox
highlighted in Chapter 2, whereby IPW with oracle weights could sometimes
(in specific settings) be outperformed by IPW with estimated weights. This
seemed to lead to a tension where, if propensity scores were known, then we
could choose to either use oracle IPW, which is always unbiased but has a
larger asymptotic variance, or feasible IPW, which may be more accurate but
may fail completely if we accidentally misspecify the propensity model.

The reason Corollary 3.3 helps is that, on inspection, one notices that the
asymptotic variance VAIPW achieved (in considerable generality) in Corollary
3.3 exactly matches the asymptotic variance VSTRAT achieved by feasible IPW
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(in the special case where Xi has discrete support). Thus, what Corollary 3.3
shows us is that, if we know the true propensity scores, then we can always
(and without really any downsides, at least asymptotically) avoid the excess
asymptotic variance of oracle IPW by simply using AIPW with an universally
consistent regression adjustment instead.

3.2 Efficient estimation under uncounfoundedness

In Chapter 2 we studied average treatment effect estimation under unconfound-
edness and when Xi is discrete. In this setting, the stratify-by-Xi estimator
is obviously a (or perhaps the) natural thing to do; and in Theorem 2.1 we
showed that it achieves an asymptotic variance VSTRAT . Meanwhile, in this
chapter, we studied a seemingly completely different estimator, AIPW, and
showed it can also achieve an asymptotic variance VAIPW = VSTRAT , but under
much more general conditions (and in particular without assuming that Xi is
discrete).

These observations suggest that the behavior

√
n (τ̂ − τ ∗)⇒ N (0, V ∗)

V ∗ = Var [τ(Xi)] + E
[
σ2

0(Xi)

1− e(Xi)

]
+ E

[
σ2

1(Xi)

e(Xi)

]
,

(3.20)

may in fact be the optimal behavior we can hope to achieve for any non-
parametric average treatment effect estimator τ̂ under unconfoundedness. The-
orem 3.2 provides an upper bound, showing that this behavior can in fact be
achieved by a practical estimator, τ̂AIPW , under considerable generality. Mean-
while, our discussion in Chapter 2 provides a heuristic lower bound; after all,
how could one possibly hope to find an estimator that’s more accurate than
the stratify-by-Xi estimator in the setting where Xi is discrete?

The following result establishes this conjecture, using a proof technique from
Chamberlain [1992]. Following Hájek [1972], he defines optimality in terms of
a local asymptotic minimax criterion: V ∗ is called the efficient variance for es-
timating τ if an estimator satisfying (3.20) exists and, for any data-generating
distribution P , no estimator exists that is more accurate than (3.20) uniformly
over a suitably expressive neighborhood of P .21 Further, any estimator sat-
isfying (3.20), potentially assuming reasonable regularity conditions, is called
efficient.

21This statement is intentionally under-specified; we refer to Chamberlain [1992] for a
precise statement.
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Theorem 3.4. Under basic setting with SUTVA, unconfoundedness and strong
overlap, V ∗ is the efficient variance for estimating the average treatment effect.

Proof. We have already established existence of an estimator satisfying (3.20)
in Theorem 3.2. For the local optimality statement, we follow the blueprint of
Theorem 1 of Chamberlain [1992], and do the following: We start by consider-
ing distributions where (Xi, Yi(0), Yi(0)) have a distribution P with a jointly
discrete support (i.e., both Xi and Yi(w) have discrete support), and verify that
the asymptotic variance of the saturated maximum likelihood estimator of the
ATE matches V ∗. We then argue that ATE estimation with a discrete P is a
parametric problem and so maximum likelihood estimation must be efficient;
and that any continuous distribution is well approximable by a discrete distri-
bution, so this efficiency result carries over to the continuous case. We refer to
Chamberlain [1992] for technical details, and for verifying that this blueprint
is in fact valid.

Consider now the case where P takes on values on a discrete space X×Y×Y
with Y ⊂ R. For any distribution P let τ(P ) = EP [Yi(1)− Yi(0)] and note
that, under unconfoundedness and with discrete support,

τ(P ) =
∑
x∈X

P (x)

(∑
y∈Y

y P1(y|x)−
∑
y∈Y

y P0(y|x)

)
(3.21)

where P (x) = EP [Xi = x] and Pw(y|x) = EP
[
Yi = y

∣∣Xi = x, Wi = w
]
. Now,

given n draws from P , let nx = |{i : Xi = x}|, nxw = |{i : Xi = x, Wi = w}|
and nxyw = |{i : Xi = x, Yi = y, Wi = w}|. The saturated maximum likelihood

estimator for the data-generating distribution P is given by P̂ (x) = nx/n and

P̂w(y|x) = nxyw/nxw. The maximum likelihood estimator for τ is then

τ̂ = τ(P̂ ) =
∑
x∈X

P̂ (x)

(∑
y∈Y

y P̂1(y|x)−
∑
y∈Y

y P̂0(y|x)

)
, (3.22)

which can be algebraically be verified to be equivalent to τ̂STRAT in this setting.
Thus, the asymptotic variance of maximum likelihood here is VSTRAT , which
by Theorem 2.1 is equal to V ∗.

Comparing regularity conditions One ambiguity in the definitions above
is that we said that an estimator is efficient if it achieves the behavior (3.20)
under “reasonable” regularity conditions—but what does it mean for regular-
ity conditions to be reasonable? We have so far seen 3 results about estima-
tors achieving the behavior (3.20): Corollary 3.3 shows this for AIPW with
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known propensity scores essentially without assumptions; Theorem 3.2 shows
this for AIPW with estimated propensity scores under the (moderately strong?)
rate-of-convergence assumption (3.11); while Theorem 2.1 showed this for the
stratify-on-Xi estimator under the (very strong) assumption that Xi is discrete.

This ambiguity is intentional, and can be helpful in describing and assessing
various proposed estimators of the average treatment effect under unconfound-
edness. When considering a candidate estimator, a good first question can be
to ask whether it is efficient, i.e., whether it sometimes achieves the behavior
(3.11). If an estimator is not efficient (e.g., like the oracle IPW estimator), then
it may be worth discarding at this step. Then, among efficient estimators, a
good second question to ask is how robust it is, i.e., how strong are the regu-
larity conditions needed for efficiency. This allows to argue, e.g., that τ̂AIPW
requires much weaker regularity conditions than τ̂STRAT to achieve desirable
asymptotic performance, and from this angle τ̂AIPW appears preferable.

Is efficiency a realistic goal? Until recently, the perspective taken above,
i.e., that efficiency is a criterion that should guide practical choice of average
treatment effect estimators, would have been considered controversial by many
econometricians and statisticians. Methods that achieved efficiency were of-
ten considered fragile, complicated and/or impractical; and, in problems that
called for treatment effect estimation under unconfoundedness, econometric
practice largely focused on methods that require parametric assumptions and
are not consistent under unconfoundedness alone (e.g., linear regression), or
non-efficient but conceptually simple methods (e.g., matching).

The critique that early methods designed to achieve efficiency were hard
to use in practice is on point: For example, such methods would often rely
on specific smoothness assumptions, and then rely on series estimators with
specific basis functions (depending on the assumed smoothness class) to form
treatment effect estimators.

The double machine learning framework, however, makes widespread use
of efficient treatment effect estimators much more practical. The main reg-
ularity condition (3.11) doesn’t depend on how we choose to estimate the
non-parametric components, and instead only requires that they are accurate
enough under squared-error loss. Machine learning methods are often tuned
via cross-validation under squared error loss, and this way of tuning predictors
is perfectly aligned with making the error terms in (3.11) small. Thus, perhaps
surprisingly, although machine learning may at first seem like a glance seem
like a technology that should be kept as far away from causal inference as possi-
ble, it turns out that—via the double machine learning construction—machine
learning (and, more generally, automatic black-box non-parametric prediction)
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is a key ingredient in making efficient treatment effect estimation practical in
a wide variety of settings.

3.3 Bibliographic notes

The literature on semiparametrically efficient treatment effect estimation via
AIPW was pioneered by Robins, Rotnitzky, and Zhao [1994], and developed in
a sequence of papers including Robins and Rotnitzky [1995] and Scharfstein,
Rotnitzky, and Robins [1999]. The form of the AIPW estimator is also present
in early work by Cassel, Särndal, and Wretman [1976] in survey sampling.
The effect of knowing the propensity score on the semiparametric efficiency
bound for average treatment effect estimation is discussed in Hahn [1998],
while the behavior of AIPW with high-dimensional regression adjustments was
first considered by Farrell [2015]. These results fit into a broader literature
on semiparametrics, including Bickel, Klaassen, Ritov, and Wellner [1993] and
Newey [1994].

The approach taken here, with a focus on generic machine learning es-
timators for non-parametric components and cross-fitting, follows the double
machine learning framework of Chernozhukov et al. [2018]. One major strength
of this approach is in its generality and its ability to handle arbitrary machine
learning estimators for µ̂(w)(x) and ê(x). Another, closely related framework
is the targeted learning framework of van der Laan and Rubin [2006], which
uses a different functional form than AIPW but can also be shown to achieve
efficiency using machine learning estimators for non-parametric components
[van der Laan and Rose, 2011].

There is a large number of estimators known to achieve efficiency under
a variety of regularity conditions. For example, Hahn [1998] showed that
non-parametric regression adjustment estimators can be efficient under strong
smoothness conditions and specific regression estimators, while Hirano, Im-
bens, and Ridder [2003] showed this type of result for non-parametric IPW.
The efficiency result given in Theorem 3.2 for AIPW is, however, much more
robust—in that it allows for use of generic machine learning methods provided
they satisfy the relatively mild rate conditions (3.11).

More recently, there has been considerable interest in deriving estimators
that achieve efficiency under minimal conditions. In the case where the func-
tions µ(w)(·) and e(·) belong to Hölder smoothness classes Robins et al. [2017]
show that, writing αµ and αe for the best constants for which rates of con-
vergence of the type (3.11) can be achieved under the posited smoothness
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assumptions, the weakest condition under which efficiency is possible is

αµ
1− 2αµ

+
αe

1− 2αe
≥ 1

2
, (3.23)

and this rate can be achieved using what Robins et al. [2017] refer to as higher-
order influence function (HOIF) estimators. The improvement of the condition
(3.23) over the condition αµ + αe ≥ 1/2 in Theorem 3.2 is considerable; for
example, when both rates are equal, in Theorem 3.2 we could allow for αµ =
αe ≥ 1/4 while (3.23) allows for αµ = αe ≥ 1/6.

One challenge with the HOIF estimator of Robins et al. [2017], however,
is that to date it has been challenging to implement in practical applications;
and so there has been work on methods that can improve over AIPW while
remaining practically feasible. Hirshberg and Wager [2021] show that a variant
of AIPW with a choice of propensity model specifically designed to minimize
bias from errors in µ̂(w)(x) is efficient under conditions that, in the Hölder case,
amount to αµ ≥ 1/4 (with no assumptions on αe); note that this corresponds
to one extreme point of the optimality surface (3.23). Meanwhile, Newey and
Robins [2018] and McClean et al. [2024] show how, in some settings, the use of
undersmoothed estimators and 3-way cross-fitting can achieve minimal condi-
tions for efficiency.
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Chapter 4
Estimating Heterogeneous
Treatment Effects

In many application areas, there is interest in going beyond average effects,
and to understand how treatment effects vary across units. In personalized
medicine, we may want to identify groups of patients who are more likely to
benefit (or less likely to suffer side effects) from a drug than others; and, in
online marketing, one may want to identify groups of customers more likely to
respond to an offer. This chapter introduces and compares a variety of methods
for estimating heterogeneous treatment effects.

The conditional average treatment effect Throughout this chapter, we
will work under the same “basic setting” as considered in the previous chapter,
i.e., with SUTVA, unconfoundedness and overlap; however, rather than focus-
ing on the average treatment effect, we now seek to estimate, understand, and
eventually act on heterogeneity in how different units respond to treatment. At
first glance, one might think that estimating treatment heterogeneity should
involve targeting the individual-i specific individual treatment effects (ITEs)
∆i = Yi(1)− Yi(0). The ITEs, however, are generally not point-identified even
under strong assumptions, and so methodologies targeting the ITEs themselves
are often not practical.

A more practical way to quantify treatment heterogeneity under uncon-
foundedness is via the conditional average treatment effect (CATE)

τ(x) = E
[
Yi(1)− Yi(0)

∣∣Xi = x
]
. (4.1)

The CATE is still an average effect; but we now consider how this average
to varies when conditioning on potential effect modifiers Xi. Note that the
definition of the CATE depends on which pre-treatment covariates are used in
(4.1): If we condition on a richer set of covariates, then the CATE function

45



will become more expressive (and capture a higher fraction of the variance of
the underlying ITEs).

There are many reasons to consider the CATE as a statistical target. It is
simple to understand and work with; and, unlike the ITE, it is point-identified.
There are also formal, decision theoretic reasons to pay attention to the CATE.
For example, the following result (stated here without proof) shows that utili-
tarian targeting rules can be expressed as thresholding rules on the CATE.

Proposition 4.1. Under the basic setting with SUTVA, unconfoundedness and
overlap described in Chapter 3, suppose a decision maker gets reward Yi(w) for
assigning treatment arm w to unit i, and needs to pay a cost C every time they
assign treatment (the control arm is free). Then, the decision rule that treats
units whose CATE is greater than the cost C, i.e., 1 ({τ(Xi) > C}), maximizes
expected rewards among all decision rules that are measurable with respect to
observed pre-treatment covariates Xi.

Example 5. Kitagawa and Tetenov [2018] discuss optimal targeting of eligi-
bility to training and job-search assistance under the National Job Training
Partnership Act (JTPA). Here, the treatment Wi is program eligibility, the
outcome Yi is earnings within 30 months of treatment assignment, and pre-
treatment covariates available for targeting are Xi = {education, income}.
The welfare-maximizing targeting rule then compares the CATE to the cost of
treatment.22

Regularization bias Before presenting methods for CATE estimation, it
is helpful to review some issues faced by a simple baseline method. Under
unconfoundedness, the CATE can be written as a difference in conditional
response surfaces,

τ(x) = µ(1)(x)− µ(0)(x), µ(w)(x) = E
[
Yi
∣∣Xi = x, Wi = w

]
. (4.2)

Thus, we could immediately obtain a consistent estimator for τ(·) by consis-
tently fitting µ̂(0)(·) and µ̂(1)(·) via separate non-parametric regressions on the
controls and treated units respectively, and then estimating the CATE as their

22As always, the value of the CATE depends on the set of covariates Xi used to define it.
In this application, one could also try to estimate the treatment effects conditionally on a
larger set of covariates, e.g., Xi = {education, income, age, family status, past experience,
...}, resulting in a more expressive CATE. Proposition 4.1 says that, given a set of measured
pre-treatment covariates available for targeting, using the CATE given those covariates is
optimal from a welfare maximization point of view. In practice, however, other considerations
may also apply; see the next chapter for a further discussion of this topic.
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difference. Following the nomenclature of Künzel et al. [2019], the resulting
estimator is often referred to as the T-learner:

τ̂T (x) = µ̂(1)(x)− µ̂(0)(x). (4.3)

However, while the T-learner is consistent, it may not perform well in finite
samples due to a phenomenon called regularization bias: Given that we fit
µ̂(0)(·) and µ̂(1)(·) separately, these two functions may end up being regularized
in different ways from each other, creating artifacts in the learned CATE es-
timate τ̂T (x). This problem is particularly acute if we use methods where the
amount of regularization depends on sample size, and if there are many more
control than treated units (or vice-versa).23

Figure 4.1, illustrates this issue. There is no treatment effect, so µ(0)(x) =
µ(1)(x) and τ(x) = 0, but both regression surfaces oscillate with x. The data is
collected via a randomized trial with π = 0.1, so there are many more controls
than treated units. Here, there end up being enough controls for µ̂(0)(·) to
be well estimated and capture the underlying oscillation of the conditional
response function. On the other hand, there are very few treated treated units,
and so the best we can do with µ̂(1)(·) is to heavily regularize it, resulting in
an estimate that is almost constant in x. Both estimates µ̂(0)(·) and µ̂(1)(·) are
reasonable on their own; however, once we take their difference as in (4.3), we
find strong apparent heterogeneity is τ̂T (x), which is concerning since in reality
τ(x) = 0 everywhere in this example.

A second concern with the T-learner, regularization-induced confounding,
arises because the T-learner does not explicitly account for variation in the
propensity score. If e(x) varies considerably, then our estimates of µ̂(0)(·) will
be driven by data in areas with more control units (i.e., with e(x) closer to 0),
and those of µ̂(1)(·) by regions with more treated units (i.e., with e(x) closer
to 1). And if there is covariate shift between the data used to learn µ̂(0)(·) and
µ̂(1)(·), this may create biases for their difference τ̂T (x).

4.1 Semiparametric modeling

As our analysis of regularization bias made clear, any good method for estimat-
ing the CATE should “focus” on estimating the CATE τ(x) accurately—and,
in a flexible statistical learning setting, this is not necessarily the same thing as
simultaneously estimating µ(0)(x) and µ(1)(x) accurately. To understand what

23Throughout this discussion, we assume that the reader is familiar with standard results
on bias, variance, regularization, cross-validation, etc., as they arise in statistical learning.
A good reference on these topics is Chapter 5 of Hastie, Tibshirani, and Friedman [2009].
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Figure 4.1: Illustration of regularization bias. Both control (blue) and treated
(red) units are drawn from the same distribution. Data is generated from an
RCT with π = 0.1, and so there are more controls than treated units. Spline
regression learns a more oscillatory model for µ(0)(x) and a flat one for µ(1)(x).
This results in an oscillatory CATE estimate, illustrated via shading, whereas
the true CATE here is identically 0.

it takes to successfully target the CATE, it is helpful to start by considering
the following semiparametric specification:

τ(x) = ψ(x) · β, ψ : X → Rd, β ∈ Rd. (4.4)

For example, in the context of Example 5, if X contains unstructured data
on income and education, one could set ψ(x) = {income in previous year, has
high-school degree, has college degree}.

We refer to this specification as semiparametric because our overall spec-
ification is non-parametric (in particular, µ(0)(x) and e(x) arbitrary), but we
imposed a parametric specification on the key component of interest. Under
the model (4.4), estimating the CATE reduces to estimating β. Working under
the basic setting from Chapter 3 and writing εi(w) = Yi(w)−µ(w)(Xi), the ad-
dition of the parametric constraint (4.4) lets us re-express our data-generating
distribution as a partially linear model,

Yi(w) = µ(0)(Xi) + wψ(x) · β + εi(w). (4.5)
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This class of problems was studied by Robinson [1988] who showed that, for
estimating β, it is helpful to re-write (4.5) as

Yi −m(Xi) = (Wi − e(Xi))ψ(Xi) · β + εi, where

m(x) = E
[
Yi
∣∣Xi = x

]
= µ(0)(Xi) + e(Xi)ψ(Xi) · β

(4.6)

denotes the conditional expectation of the observed Yi, marginalizing over Wi

and εi = εi(Wi).
The expression (4.6) shows that, if we knew m(x) and e(x), then we could

estimate β via a simple regression algorithm: First define Ỹ ∗i = Yi −m(Xi)
and Z̃∗i = ψ(Xi)(Wi − e(Xi)), and then estimate β̂∗ by running residual-on-
residual regression Ỹ ∗i ∼ Z̃∗i . In practice, of course, e(x) may not be known
and m(x) is essentially never known, and so running the above approach is not
feasible.

Our discussion in Chapter 3, however, motivates trying a plug-in approach
using the double machine learning framework. We first estimate the unknown
components m(x) and e(x) via a machine learning method of our choice, and
then plug them into (4.6) using cross-fitting:

1. Run non-parametric regressions Y ∼ X and W ∼ X using a method of
our choice to get m̂(x) and ê(x) respectively.

2. Use cross-fit residuals to define transformed features Ỹi = Yi − m̂(−k(i))(Xi)
and Z̃i = ψ(Xi)(Wi − ê(−k(i))(Xi)).

3. Estimate β̂ by running a linear regression Ỹi ∼ Z̃i.

As established below, this residual-on-residual regression estimator has a sim-
ilar special property as established for AIPW in Theorem 3.2: As long as
the non-parametric components are reasonably accurately estimated, then β̂ is
asymptotically equivalent to the oracle β̂∗, and satisfies a central limit theorem
at the 1/

√
n-scale.24

Theorem 4.2. Under the basic setting with SUTVA, unconfoundedness and
overlap described in Chapter 3, suppose that (4.4) holds, that the regression
features are bounded ‖ψ(Xi)‖∞ ≤ M , and that we estimate β via a K-fold

24This property is special: For most estimators, cross-fit plug-in versions of the estimator
will not be asymptotically equivalent to an oracle version of the estimator under useful
conditions. In general, this property requires the estimator to be “Neyman-orthogonal”; in
particular, both AIPW and residual-on-residual regression are Neyman-orthogonal. Giving
an abstract characterization of Neyman-orthogonality and when it holds is beyond the scope
of this book; see Chernozhukov et al. [2022a] for an in-depth study of this topic.
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cross-fit version of residual-on-residual regression as given above. Suppose fur-
ther that we use estimators for the non-parametric components such that, for
all folds k = 1, . . . , K,

n−2αm
1

|{i : k(i) = k}|
∑

{i:k(i)=k}

(
m̂(−k)(Xi)−m(Xi)

)2 →p 0,

n−2αe
1

|{i : k(i) = k}|
∑

{i:k(i)=k}

(
ê(−k)(Xi)− e(Xi)

)2 →p 0,
(4.7)

for some constants satisfying αm ≥ 0, αe ≥ 1/4 and αm + αe ≥ 1/2. Then,
writing Z̃∗i and Z̃∗i are the oracle residuals as defined below (4.6),

√
n
(
β̂ − β

)
⇒ N (0, Vβ) , Vβ = Var

[
Z̃∗i

]−1

E
[(
εiZ̃

∗
i

)⊗2
]

Var
[
Z̃∗i

]−1

, (4.8)

provided Var
[
Z̃∗i

]
has full rank.

Proof. Under our basic setting and (4.4), the expression (4.6) can be viewed
as a well-specified linear model with heteroskedastic errors. Thus, a standard
analysis of linear regression under heteroskdasticity [White, 1980] immediately
implies that the oracle residual-on-residual regression estimator β̂∗ satisfies the
limit result (4.8). It thus suffices to show that

√
n(β̂ − β̂∗)→p 0.

We can explicitly write out the feasible and oracle residual-on-residual re-
gression estimators as

β̂ =

(
1

n

n∑
i=1

Z̃⊗2
i

)−1
1

n

n∑
i=1

Z̃iỸi, β̂∗ =

(
1

n

n∑
i=1

Z̃∗⊗2
i

)−1
1

n

n∑
i=1

Z̃∗i Ỹ
∗
i . (4.9)

We start showing that, for each fold k

√
n

 1

n

∑
{i:k(i)=k}

Z̃iỸi −
1

n

∑
{i:k(i)=k}

Z̃∗i Ỹ
∗
i

→p 0.

To do so, we spell out Ỹi, Z̃i, etc., and expand∑
{i:k(i)=k}

ψ(Xi)
(
Wi − ê(−k)(Xi)

) (
Yi − m̂(−k)(Xi)

)
− ψ(Xi) (Wi − e(Xi)) (Yi −m(Xi))

=
∑

{i:k(i)=k}

ψ(Xi) (Wi − e(Xi))
(
m(Xi)− m̂(−k)(Xi)

)
+

∑
{i:k(i)=k}

ψ(Xi)
(
e(Xi)− ê(−k)(Xi)

)
(Yi −m(Xi))

+
∑

{i:k(i)=k}

ψ(Xi)
(
e(Xi)− ê(−k)(Xi)

) (
m(Xi)− m̂(−k)(Xi)

)
.
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We then bound these terms exactly as in the proof of Theorem 3.2: For the
first two terms above we rely on cross-fitting; while for the last we use Cauchy-
Schwarz (relying on our assumptions that αm+αe ≥ 1/2 and ‖ψ(Xi)‖∞ ≤M).

The fact that

√
n

 1

n

∑
{i:k(i)=k}

Z̃⊗2
i −

1

n

∑
{i:k(i)=k}

Z̃∗⊗2
i

→p 0

follows by the same argument, except now we need to use 2αe ≥ 1/2 in the
Cauchy-Schwarz bound. Finally, to put everything together, we invoke Slut-
sky’s lemma, the fact that

1

n

n∑
i=1

Z̃∗⊗2
i →p Var

[
Z̃∗i

]
� 0,

and that the matrix inverse is a continuous function in the neighborhood of
full-rank matrices.

The constant effect model One interesting special case of semiparametric
modeling is the constant treatment effect model

µ(1)(x)− µ(0)(x) = τ, (4.10)

whereby we assert that treatment effects do not vary with covariates; this is
an instance of (4.4) with ψ(x) = 1. We can thus also apply the residual-on-
residual regression approach developed above in this setting, resulting in the
following:

Corollary 4.3. Under the basic setting with SUTVA, unconfoundedness and
overlap from Chapter 3, suppose that the constant treatment effect model (4.10)
holds, and we estimate τ via a cross-fit plug-in residual-on-residual estimator
with non-parametric components satisfying (4.7). Then,

√
n (τ̂ − τ)⇒ N (0, Vτ ) ,

Vτ =
E
[
e(Xi)(1− e(Xi))

(
(1− e(Xi))σ

2
(1)(Xi) + e(Xi)σ

2
(0)(Xi)

)]
E [e(Xi)(1− e(Xi)]

2 .
(4.11)

Note that, under the model (4.10), one could also have estimated the pa-
rameter τ via methods for the average treatment effect such as AIPW (because,
when the treatment effect is constant τ , then the average treatment effect is
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also τ). However, AIPW would in this case generally be less accurate than
the residual-on-residual regression estimator. In particular, in the special case
where (4.10) holds and σ2

(0)(x) = σ2
(1)(x) = σ2, then25

Vτ =
σ2

E [e(Xi)(1− e(Xi)]
≤ σ2 E

[
1

e(Xi)(1− e(Xi))

]
= VAIPW , (4.12)

where the inequality above follows from Jensen’s inequality. This observation
highlights the fact that efficiency of an estimator for a specific target depends
closely on assumptions made. We showed Chapter 3 that AIPW is efficient in
our generic non-parametric setting; however, once we add an extra constraint
like (4.10), then estimators that exploit this constraint can do better.26

4.2 A loss function for treatment heterogeneity

The residual-on-residual regression estimator developed above is helpful if we
believe in the semiparametric specification (4.4). In order to meet our origi-
nal goal of estimating the CATE in a generic setting with unconfoundedness,
however, we need to generalize this estimator to a fully non-parametric setting.

As background for how to do this, it is helpful to think in terms of how this
generalization was carried out in the context of simple prediction, i.e., predict-
ing a real-valued Yi from features Xi. The classical approach to doing so is via
linear regression, but nowadays methods like decision trees, boosting and neu-
ral networks offer compelling non-parametric alternatives. Key insights in this
progression include the use of flexible basis expansions to express more com-
plicated signals; penalization to keep the complexity of the learned predictor
in check despite the use of high-dimensional basis expansions; cross-validation
to tune the amount of penalization; and algorithmic techniques like decision
trees and neural networks to adaptively generate basis expansions suited to
the task at hand. Hastie, Tibshirani, and Friedman [2009] provide an excellent
book-length presentation of these concepts; Chapters 3, 5 and 7 are particularly
relevant for understanding the discussion below.

Our task here is to deploy all these concepts to CATE estimation. To
this end, we start by writing the residual-on-residual regression from above as
a loss-minimization problem. Recall that, in the simple prediction case, the
ordinary least-squares solution β̂ to regressing Yi on ψ(Xi) using n samples can

25The term Var [τ(Xi)] in VAIPW (3.5) vanishes here because the CATE is constant.
26A risk of using the residual-on-residual estimator, of course, is that the constant treat-

ment effect model (4.10) may be misspecified. We examine what happens to the residual-
on-residual estimator under misspecification in Exercise 5 in Chapter 16.
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be characterized via squared-error loss minimization,

β̂ = argminβ

{
1

n

n∑
i=1

`reg (Yi; ψ(Xi) · β)

}
, `reg(y; z) = (y − z)2. (4.13)

By the same argument, we can verify that our residual-on-residual regression
algorithm also minimizes a certain least-squares objective, namely27

β̂ = argminβ

{
1

n

n∑
i=1

ˆ̀(−k(i)) (Xi, Yi, Wi; ψ(Xi) · β)

}
ˆ̀(−k) (x, y, w; z) =

((
y − m̂(−k)(x)

)
− (w − ê(−k)(x))z

)2
.

(4.14)

One critical difference between (4.13) and (4.14) is that, in our setting, the
“loss” function ˆ̀(−k) is data-dependent, and takes as input our cross-fitted
predictions for m(·) and e(·). The fact that our loss function is data-dependent
in this way will lead to technical challenges down the road; however, it does
not preclude us from proceeding with algorithm development.

We are now ready to apply the statistical learning roadmap to CATE esti-
mation. We still start from the semiparametric specification (4.4); however, we
now consider featurizations ψ : X → Rdn that map our input covariates Xi into
increasingly high-dimensional representations as our sample size grows. For ex-
ample, ψ could consist of a set of polynomial or trigonometric basis functions
with increasing numbers of terms. The motivation with this approach is that,
once we include enough basis functions, we will be able to accurately represent
any reasonable CATE function using this basis, i.e., we have τ(x) ≈ ψ(x) · β
for some β ∈ Rdn [Chen, 2007].

The second step in the statistical learning roadmap is to introduce penal-
ization to control the complexity of the learned CATE function because, when
dn is large relative to n, directly running a residual-on-residual regression with
covariates ψ(x) may be unstable. One choice here is to use the lasso penalty
[Tibshirani, 1996], which penalizes the sum of the absolute values of β:

τ̂(x) = ψ(x) · β̂,

β̂ = argminβ

{
1

n

n∑
i=1

ˆ̀(−k(i)) (Xi, Yi, Wi; ψ(Xi) · β) + λ

q∑
j=1

|βj|

}
,

(4.15)

where λ ≥ 0 is a penalty parameter that controls the complexity of the learned
function. A judicious choice of λ enables us to still get a good estimate τ̂(x),

27If true propensity scores e(x) are known, they can (and should) be used instead of the
cross-fitted estimates ê(−k)(x).
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but protects against the risks of overfitting or numerical instability that occur
when ψ(x) is high-dimensional. Using λ = 0 corresponds to just running linear
regression of Yi on ψ(Xi), while in the limit λ→∞ all coefficients β̂ get pushed
to 0. Another simple choice would be to use a ridge penalty, which adds a term
λ
∑q

j=1 β
2
j to the objective.

In order to make (4.15) actionable, we need a data-driven way to choose
the tuning parameter λ. The simplest way to proceed, is using a validation set,
i.e., assuming that we have access to i = 1, . . . , nval independent datapoints
that can be used for validation. To choose λ, we start running (4.15) for a grid
of candidate λ values, resulting in a large number of candidate estimates τ̂λ(x).
Then, we pick the value of λ that minimizes the validation loss,28

λ̂ = argminλ

{
1

nval

∑
validation set

ˆ̀(Xi, Yi, Wi; τ̂λ(Xi))

}
, (4.16)

and finally use CATE predictions τ̂(x) = τ̂λ̂(x). Another, similar way of choos-
ing λ that does not require access to an independent validation set is to use
cross-validation; see Chapter 7 of Hastie, Tibshirani, and Friedman [2009] for
details.

The last step in moving from our residual-on-residual regression estimator
for semiparametric modeling to a fully flexible non-parametric CATE estimator
is to use algorithmic techniques like decision trees, boosting, or neural networks
to automate the choice of good basis expansions ψ(x). Doing so, however, is
beyond the scope of this book; we instead refer to Nie and Wager [2021] for a
completion of this discussion. The resulting algorithmic approach is called the
R-learner. The causal forest algorithm of Athey, Tibshirani, and Wager [2019]
instantiates the R-learner framework using random forests [Breiman, 2001].29

Foster and Syrgkanis [2023] provide general formal results showing that, even
after moving to a complex non-parametric setting, the R-learner still maintains
robustness properties suggested in Theorem 4.2.

A numerical example We now test out the lasso-based R-learner based
approach (4.15), and compare it with a lasso-based T-learner approach (4.3)

28Here, since we are evaluating our loss-function ˆ̀(·) on fresh data, we no longer need
cross-fitting to avoid overfitting problems. In practice, of course, one needs to choose which
version of ˆ̀(·) one uses on the development set; one simple and reasonable approach is
to average all the individual cross-fit loss functions produced on the training set, and use
ˆ̀(·) = K−1

∑K
k=1

ˆ̀(−k)(·).
29For a presentation that explicitly presents causal forests as a type of R-learner, see Athey

and Wager [2019].
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Figure 4.2: Test set CATE estimates generated via the lasso-based R-learner
and T-learner. The true CATE function is shown as a black dashed line.
The solid lines trace a smooth average of how the CATE estimates vary with
X2 +X3.

where both µ̂(0)(·) and µ̂(1)(·) are fit with a lasso using predictors ψ(Xi). We
independently generate n = 4, 000 samples as follows:

X ∼ N (0, I10×10) , W ∼ Bernoulli(e(X)), e(X) = 1
/ (

1 + e−(X2+X3)
)

Y (w) = 2 log
(
1 + eX1+X2+X3

)
+ w 1 (X2 +X3 ≥ 0) + ε, ε ∼ N (0, 1) .

The original covariates are 10-dimensional, but the signal is obviously non-
linear and so simple linear methods would be inappropriate here. To address
this challenge, we expand our covariates into a 2555-dimensional basis expan-
sion ψ(Xi) that includes both non-linearities and interactions between the co-
variates.30 We then use lasso penalization with a cross-validated choice of λ to
avoid instability due to our use of a high-dimensional basis expansion.

What’s challenging about this setting is that units for which X2 + X3 is
large are simultaneously more likely to be treated, have a larger baseline effect
whether or not they get treated, and have a larger treatment effect. This type

30We expand all features into 7th order natural cubic splines using the R-command ns,
and then take full 2nd order interactions between these spline terms.
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of situation may arise, e.g., in evaluating educational programs if there exists a
class of, say, high-initiative people who are simultaneously more likely to seek
out and benefit from the educational resources, but also would have achieved
reasonably good outcomes without the resource. In settings like this, in order to
avoid regularization-induced confounding, it is important to accurately correct
for the correlation between propensity scores and baseline effects.

Results with both the R-learner and T-learner are shown in Figure 4.2.
The y-axis of the plot shows CATE estimates τ̂(Xi), while the x-axis shows
Xi2 + Xi3. The choice of x-axis reflects that, in reality, we know that the
CATE only varies with Xi2 + Xi3. The algorithm, of course, does not know
this a-priori—and this is why the actual CATE estimates τ̂(Xi) also depend on
other aspects of the covariates (and this manifests itself as apparent noise in
the estimates). Here, we see that the R-learner has somewhat noisy estimates,
but gets the overall order of magnitude of the CATE right. In contrast, the T-
learner appears to suffer from severe regularization-induced confounding here,
and vastly overstates the amount by which τ(Xi) grows with Xi2 +Xi3.

4.3 Bibliographic notes

The literature on non-parametric CATE estimation has received a huge amount
of attention in recent years. Some proposed methods for CATE estimation are
based on specific machine learning methods, e.g., trees [Athey and Imbens,
2016], random forests [Athey, Tibshirani, and Wager, 2019] or Bayesian tree
ensembles [Hahn, Murray, and Carvalho, 2020]. Others are more generic, and
can be paired with multiple algorithmic approaches. We here discussed the R-
learner [Nie and Wager, 2021]; other generic approaches to CATE estimation
include the X-learner [Künzel et al., 2019] and the DR-learner [Kennedy, 2023],
and the modified covariate learner [Tian et al., 2014].

One important topic we did not focus today is what to do after we produce
a CATE estimate. After fitting a CATE estimator it is generally good practice
to seek to formally validate its output and quantify the strength of heterogene-
ity; some proposals for how to do so are given in Chernozhukov et al. [2017]
and Yadlowsky et al. [2021]. Meanwhile, if the goal of fitting a CATE model
was to guide treatment choice, then Proposition 4.1 suggests that empirical
thresholding rules of the form 1 ({τ̂(x) > C}) are at least worth considering.
Manski [2004], Stoye [2009] and Hirano and Porter [2009] study properties of
such thresholding learns under the lens of statistical decision theory. Sun et al.
[2021] discuss settings where the treatment cost Ci is random and may also
vary with covariates Xi.

In terms of formal results, Kennedy et al. [2024] show that a variant of
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the R-learner is minimax for estimating CATEs under a set of smoothness
assumptions, while Foster and Syrgkanis [2023] provide guarantees for machine
learning with a class of “orthogonal” loss functions that include the R-loss.
Zhao, Small, and Ertefaie [2022] consider post-selection inference for the CATE
in a high-dimensional linear specification using an algorithm that builds on the
semiparametric estimator from Theorem 4.2.

Finally, we also note some work on treatment heterogeneity based on dif-
ference conceptual frameworks. Although the ITE is not generally point-
identified, we can still seek bounds or intervals for it. Lei and Candès [2021]
provide one such method for doing this using conformal inference. Ding, Feller,
and Miratrix [2019] study heterogeneous treatment effect estimation in a ran-
domized trial under the strict Neyman model for randomization inference dis-
cussed in Chapter 1, and examine what can be said about treatment hetero-
geneity without making any sampling assumptions on the potential outcomes.
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Chapter 5
Policy Learning

So far, we’ve focused on methods for estimating treatments effects. In many
application areas, however, the fundamental goal of performing a causal anal-
ysis isn’t to estimate treatment effects, but rather to guide decision making:
We want to understand treatment effects so that we can effectively prescribe
treatment and allocate limited resources.

The problem of learning optimal treatment assignment policies is closely
related to—but subtly different from—the problem of estimating treatment
heterogeneity. On one hand, policy learning appears easier: All we care about is
assigning people to treatment or to control, and we don’t care about accurately
estimating treatment effects beyond that. On the other hand, when learning
policies, we need to account for considerations that were not present when
simply estimating treatment effects: Any policy we actually want to use must
be simple enough we can actually deploy it, cannot discriminate on protected
characteristics, should not rely on gameable features, etc.

Policy value For our purposes, a treatment assignment policy π(x) is a
mapping31

π : X → {0, 1} , (5.1)

such that individuals with features Xi = x get treated if and only if π(x) = 1.
Under the potential outcome specification, the expected realized outcome when
treatment is chosen according to the policy π is

V (π) = E [Yi (π(Xi))] . (5.2)

We refer to V (π) as the value of the policy π, and assume that the decision
maker wants to use data to learn a policy π̂ such that V (π̂) large. This frame-
work relies on an implicit assumption that the outcome Yi captures the relevant

31In some applications (e.g., when a budget constraint needs to be satisfied exactly) it is
helpful to consider randomized policies π : X → [0, 1], where a non-integer value of π(x) is
interpreted as a treatment probability. Results discussed here extend directly to this setting.
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benefit or reward the decision maker wants to optimize, and that the decision
maker is utilitarian in the sense that their objective is to maximize the average
reward across units.

Workflow Conceptually, there are three key phases in the policy learning
workflow. First, we need to collect data with random or quasi-random treat-
ment assignments Wi to learn a policy π̂; throughout this chapter, we will
assume that the treatment in this first stage is unconfounded and that data is
drawn as in the basic setting from Chapter 3. In a second (optional) phase, we
may want to evaluate the quality of the learned policy, i.e., estimate V (π̂).
This requires a second dataset (often referred to as a test set) with random
or quasi-random treatment assignment. Finally, once we’re done learning, we
enter the last phase where we may choose to deploy the learned policy, i.e.,
we may choose to set Wi = π̂(Xi) with the hope that the expected outcome
E [Yi] obtained via Yi = Yi(π̂(Xi)) will be large. In this third stage, there is
no more randomness in treatment effects, so we cannot (non-parametrically)
learn anything about causal effects anymore.

As noted earlier in Proposition 4.1, if we place no restrictions on π, then
the maximizer of V (π) is the policy that thresholds the CATE:

π∗ ∈ argmaxπ {V (π)} , π∗(x) = 1 ({τ(x) > 0}) . (5.3)

Thus, one possible approach to learning policies is to apply the plug-in principle
to (5.3): One can first use methods discussed in the previous chapter to generate
an estimate τ̂(·) of the CATE, and then set π̂(x) = 1({τ̂(x) > 0}). This
approach may be reasonable in some applications, but may result in policies
that are hard to interpret or may not respect other practical constraints that
are called for in the application. The focus of this chapter will be on developing
methods for learning policies that do respect such constraints; we will present
such methods in Section 5.2 after first discussing some preliminaries on policy
evaluation below.

Example 5 (Continued). In the previous chapter, we introduced an example
from Kitagawa and Tetenov [2018] where the authors seek to target JTPA
eligibility based on education and income. The optimal, unrestricted targeting
rule would just threshold the CATE. For feasibility reasons, however, they are
most interested in linear treatment rules of the form32

τ(x) = 1 ({prior earnings · α1 + education · α2 > c}) .
32We recognize that the CATE likely non-linear here, but for practical reasons we still

seek the welfare-maximizing linear thresholding rule (that is learned in a way that allows for
non-linearity in the CATE).
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Learning welfare-maximizing rules of this type requires new methods, intro-
duced in this chapter.

5.1 Policy evaluation

The key focus of this chapter is on the first “learning” part of the policy learning
workflow, i.e., on how to use data to choose a good policy π̂. Methodologically,
however, we first need to discuss the second “evaluation” part of the workflow:
If someone gives us a policy π̂, how can we estimate V (π̂)?

For the purpose of this section, we will assume that we have access to
test set of n samples with unconfounded treatment assignment as in the basic
setting from Chapter 3, and that this test set is independent of the data used
to learn the candidate policy π̂, i.e., the training set. We will then discuss
evaluation of π̂ conditionally on the training set: Here, we are not trying
to estimate E [V (π̂)] (i.e., to integrate over randomness in π̂), but simply to
estimate V (π̂) for the specific realization of π̂ on hand. Because the test set
and training sets are independent of each other, this task is equivalent to using
the test set to estimate V (π) for an arbitrary fixed policy π; and for simplicity
we will present the rest of this section in terms of this latter task.

Inverse-propensity weighting Consider evaluating a given deterministic
policy π under unconfoundedness. If we further know the treatment propensi-
ties e(x), then we can obtain a simple estimate of V (π) via inverse-propensity
weighting (IPW):

V̂IPW (π) =
1

n

n∑
i=1

1 ({Wi = π(Xi)})Yi
P
[
Wi = π(Xi)

∣∣Xi

] , (5.4)

where P
[
Wi = π(Xi)

∣∣Xi = x
]

= e(x) when π(x) = 1 and 1− e(x) else. Qual-
itatively, this approach averages outcomes across those observations for which
the sampled treatment Wi matches the policy prescription π(Xi), and uses
inverse-propensity weighting to account for the fact that some relevant poten-
tial outcomes remain unobserved.

When the treatment propensities are known, we can use the same argument
as in Theorem 2.2 to check that, for any given policy π, the IPW estimate
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V̂IPW (π) is unbiased for V (π),

E
[
V̂ (π)

]
= E

[
1 ({Wi = π(Xi)})Yi
P
[
Wi = π(Xi)

∣∣Xi

]]

= E

[
1 ({Wi = π(Xi)})Yi(π(Xi))

P
[
Wi = π(Xi)

∣∣Xi

] ]

= E

[
E

[
1 ({Wi = π(Xi)})
P
[
Wi = π(Xi)

∣∣Xi

] ∣∣Xi

]
E
[
Yi(π(Xi))

∣∣Xi

]]
= E [Yi(π(Xi))] = V (π),

(5.5)

where the second equality follows by consistency of potential outcomes and the
third by unconfoundedness.

Augmented IPW In Chapter 3, we discussed how IPW-based estimators for
the average treatment effect introduced in Chapter 2 are generally inefficient (at
least when run with the true propensity scores) and are not robust to estimation
error in e(x); and how the augmented IPW (AIPW) construction can be used
to address both of these shortcomings. Similar considerations apply with policy
evaluation. For conciseness, we do not repeat the development from Chapter
3 here, and instead simply state the AIPW estimator and its key properties.

As usual, forming the AIPW requires estimates µ̂w(x) for the conditional
response functions and ê(x) for the propensity score. Given such estimates, the
plug-in non-parametric regression estimator for V (π) is obtained by averaging
predictions we would get by following the policy π, i.e.,

V̂REG(π) =
1

n

n∑
i=1

µ̂π(Xi)(Xi). (5.6)

AIPW is obtained by using IPW to debias this estimator by extracting any
remaining signal from the regression residuals,

V̂AIPW (π) =
1

n

n∑
i=1

µ̂π(Xi)(Xi) +
1 ({Wi = π(Xi)})
P
[
Wi = π(Xi)

∣∣Xi

] (Yi − µ̂π(Xi)(Xi)
)
. (5.7)

As always with AIPW-type estimators, cross-fitting is recommended when
forming the AIPW estimator. If we use cross-fitting and use estimates for
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µ̂w(x) and ê(x) that converge at the rates assumed in Theorem 3.2, then

√
n
(
V̂AIPW (π)− V (π)

)
⇒ N

(
0, Var

[
µπ(Xi)(Xi)

]
+ E

[
σ2
π(Xi)

(Xi)

P
[
Wi = π(Xi)

∣∣Xi

]]) , (5.8)

and the AIPW estimator is efficient. The proof of these results exactly mirrors
the arguments used in Chapter 3.

Policy comparison It is often of interest to compare two policies π1 and π2

by estimating the difference in their values

∆(π1, π2) = V (π1)− V (π2). (5.9)

For example, if π0 is a status-quo treatment-assignment rules, and π̂ is a new
proposed data-driven rule, then the difference ∆(π̂, π0) directly quantifies the
benefit of adopting the data-driven rule relative to the status quo.

Given the above discussion, a natural way to estimate the value difference
between to policies is to take the difference between their AIPW value esti-
mates. A direct algebraic manipulation can be used to re-express the resulting
estimator in condensed form as,

∆̂AIPW (π1, π2) =
1

n

n∑
i=1

(π1(Xi)− π2(Xi)) Γ̂i,

Γ̂i = µ̂(1)(Xi)− µ̂(0)(Xi) +
Wi

ê(Xi)

(
Yi − µ̂(1)(Xi)

)
− 1−Wi

1− ê(Xi)

(
Yi − µ̂(0)(Xi)

)
,

(5.10)

and under the conditions of Theorem 3.2

√
n
(

∆̂AIPW (π1, π2)−∆(π1, π2)
)

⇒ N
(

0, Var [(π1(Xi)− π2(Xi)) τ(Xi)]

+ E
[
1 ({π1(Xi) 6= π2(Xi)})

(
σ2

0(Xi)

1− e(Xi)
+
σ2

1(Xi)

e(Xi)

)])
.

(5.11)

When π1 and π2 often agree on the action to take, then ∆̂AIPW (π1, π2) only
needs to consider outcomes in the smaller region where their recommendations
differ—thus enabling a considerable improvement in precision.
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One specific policy contrast that is often of interest is the comparison of a
given policy π to the never-treat policy. We use short-hand ∆(π) = ∆(π, 0)
for this quantity, and refer to it as the benefit of the policy π. We also note
that the benefit of the always-treat policy, ∆(1), corresponds exactly to the
average treatment effect, and as a sanity check we can verify that in this case
(5.11) is just a re-statement of the result in Theorem 3.2.

Aside: Treatment prioritization rules One type of policy that often
arises in practice is treatment prioritization rules. Such policies start with
a priority function S : X → R, and then assign treatment to the top q-th
fraction of units as ranked by the priority S(Xi):

πqS = 1
({
S(Xi) ≥ F−1

S (1− q)
})
, (5.12)

where FS is the the cumulative distribution function of the priorities S(Xi).
Here, the priority function could be a CATE estimate obtained using a separate
training set, a risk measure quantifying who’s most at risk of a bad outcome
without treatment, or some other application-relevant notion of priority.

We can use policy evaluation to quantify the extent to which the priority
function succeeds in allocating treatment to those who benefit most from it.
The QINI curve estimates the benefit ∆(πqS) of treating the top q-th fraction
of units for different values of q, and then plots ∆(πqS) on the Y -axis against q
on the X-axis. In settings where each unit has a constant cost of treatment,
the QINI curve quantifies a cost-benefit exercise where we measure how the
obtained benefit changes as we spend more.

Meanwhile, the TOC curve considers q−1∆(πqS) − ∆(1), and plots this
quantity against q. This curve quantifies the extent to which the top q-th
fraction of units as prioritized by S(·) benefit more from the treatment than
randomly selected units. These quantities are discussed in Yadlowsky et al.
[2021]; the paper also advocates considering the area under the TOC curve with
units prioritized by estimated CATE as a useful measure of overall detected
treatment heterogeneity.

The value of treatment prioritization rules can again be estimated using the
doubly robust approach:

∆̂AIPW (πqS) =
1

n

bqnc∑
k=1

Γ̂i(k), S
(
Xi(1)

)
≥ S

(
Xi(2)

)
≥ . . . ≥ S

(
Xi(n)

)
. (5.13)

One statistical challenge in studying the large-sample properties of this esti-
mator is that it depends on the empirical q-th quantile of S(Xi), which results
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in an inflated asymptotic variance relative to (5.8). Yadlowsky et al. [2021]
provide a central limit theorem for the value estimate in (5.13) as well as for
induced area-under-the-curve metrics for QINI and TOC curve estimates; they
also discuss resampling-based methods for these quantities.

5.2 Empirical-welfare maximization

We now return to the task of learning a policy, i.e., using experimental or quasi-
experimental data to choose a good treatment assignment rule π̂(·). Through-
out, we assume that the policymaker is constrained to choose a policy π be-
longing to some class Π of acceptable policies; for example, Π may encode
restrictions on the functional form the policy is allowed to take or on which
variables it is allowed to use. Simple examples of policy classes one might
consider include the class of linear thresholding rules π(x) = 1 ({a · x ≥ c}) for
some vector a and threshold c, or the class of fixed-depth decision trees.

Given this setting, the optimal policy—or policies—are those that maximize
policy value among all acceptable policies:

π∗ ∈ argmax {V (π′) : π′ ∈ Π} . (5.14)

Any non-optimal (but acceptable) policy π falls short of this best possible
policy value, and suffers regret

R(π) = sup
π
{V (π′) : π′ ∈ Π} − V (π). (5.15)

Our goal is to learn a policy with guaranteed worst-case bounds on the regret
R(π̂). We refer this task as a learning (rather than estimation) task because
the performance of π̂ is only assessed in terms of its regret. No requirements
will be made on π̂ converging to π∗ in terms of its functional form (and in fact
no assumption is made that there is a unique optimal policy π∗).

If the optimal policy π∗ is a maximizer of the true value function V (π) over
π ∈ Π, then it is natural to attempt learn π̂ by maximizing an estimated value
function:

π̂ = argmax
{
V̂ (π) : π ∈ Π

}
. (5.16)

This approach was coined as empirical-welfare maximization by Kitagawa and
Tetenov [2018]. In the previous section we already discussed two estimators
of V (π) using data with randomized or unconfounded treatment assignment,
namely the IPW and AIPW estimators, and both can be used to learn following
(5.16). We refer to the maximizer of V̂IPW (π) over π ∈ Π as π̂IPW , and to the
maximizer of V̂AIPW (π) as π̂AIPW .
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Regret bounds Proving that the empirical-welfare maximization approach
achieves low regret is beyond the scope of this book; however, we here sketch
the starting point of an argument for doing so. Let π∗ be any policy achieving
the maximal policy value, and let π̂ be a maximizer of the estimated value as
in (5.16). Then,

R (π̂) = V (π∗)− V (π̂)

= V (π∗)− V̂ (π∗) + V̂ (π∗)− V̂ (π̂) + V̂ (π̂)− V (π̂) .
(5.17)

Because π̂ is a maximizer of the estimated value we have V̂ (π∗)− V̂ (π̂) ≤ 0,
so we can further get

R (π̂) ≤ V (π∗)− V̂ (π∗) + V̂ (π̂)− V (π̂)

≤ 2 sup
{∣∣∣V̂ (π)− V (π)

∣∣∣ : π ∈ Π
}
,

(5.18)

and in particular

E [R(π̂)] ≤ 2E
[
sup

{∣∣∣V̂ (π)− V (π)
∣∣∣ : π ∈ Π

}]
. (5.19)

Thus, proving regret bounds for any empirical-welfare maximization approach
reduces to proving uniform bounds on the error of V̂ (π) that hold simultane-
ously for all acceptable policies π ∈ Π.

One can use tools from empirical process theory to bound the term on the
right-hand-side of (5.19); however, doing so relies on technical results beyond
the scope of this presentation. To state one concrete version of a result ob-
tained by following this path, let VC(Π) denote the Vapnik-Chervonenkis
dimension of Π (in many practical cases, one can essentially think of VC(Π)
as capturing the number of parameters needed to specify an element of Π), and
assume that VC(Π) is finite. Then, Athey and Wager [2021] show that—under
the conditions of Theorem 3.2 along with further regularity conditions—the
policy learned by maximizing the AIPW value estimate (5.7) satisfies

lim sup
n

√
nE [R(π̂AIPW )]

≤ 60

√
VC(Π)

(
Var [τ(Xi)] + E

[
σ2

0(Xi)

1− e(Xi)
+
σ2

1(Xi)

e(Xi)

])
.

(5.20)

What’s meaningful about this bound is that it connects how the worst-case
regret of empirical-welfare maximization scales with various problem primi-
tives. Specifically, we see that the bound increases with the square root of the
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dimension of the Π (larger policy spaces are harder to learn over) and the vari-
ance of the AIPW scores (learning is harder when ATE estimation is harder),
and decreases with the square root of the sample size (more data helps). The
constant 60 is likely loose here, though.33

Policy learning as weighted classification The above discussion on regret
shows that empirical-welfare maximization is in principle a promising approach
to policy learning. However, in order to use this approach in practice, one needs
to be able to carry out the optimization problem (5.16) in a computationally
tractable manner. This is in general a challenging (non-convex) optimization
problem; thankfully, however, it turns out that the empirical-welfare maximiza-
tion problem is in many cases equivalent to a weighted classification problem,
thus allowing us to leverage computational insights from that literature.

Here, we focus on maximizing the AIPW value estimate (5.7). As a first
helpful step, we symmetrize the objective by defining

ÂAIPW (π) = V̂AIPW (π)− V̂AIPW (1− π), (5.21)

i.e., the estimated improvement from following π relative to always doing the
opposite of π. Clearly, π is a maximizer of V̂AIPW (π) if and only if it is a
maximizer of ÂAIPW (π); thus, we can equivalently write

π̂AIPW = argmax
{
ÂAIPW (π) : π ∈ Π

}
. (5.22)

Furthermore, following our discussion on policy comparisons, we can check that
check that

ÂAIPW (π) =
1

n

n∑
i=1

(2π(Xi)− 1) Γ̂i, (5.23)

where Γ̂i is as defined in (5.10).
For the purpose of optimization, the upshot is that we can now re-write our

empirical-welfare maximization problem as a weighted classification problem:

π̂AIPW = argmax


1

n

n∑
i=1

(2π(Xi)− 1) sign
(

Γ̂i

)
︸ ︷︷ ︸

classification objective

∣∣∣Γ̂i∣∣∣︸︷︷︸
sample weight

: π ∈ Π

 . (5.24)

33The authors prove that the functional dependence of the bound (5.20) on the problem
primitives is the best possible, and the constant is loose by a factor at most 200.

66



Qualitatively, the intuition here, policy learning is equivalent to trying to
choose a policy that matches the sign of the AIPW scores as well as possi-
ble, with weight corresponding to the magnitude of the AIPW scores. Prac-
tically, this result means that we can use any software package for weighted
classification to optimize our target objective and learn π̂AIPW .

The weighted classification formulation (5.24) is valuable from a compu-
tational perspective; however, one should be careful not to read into it too
much. In typical signal-to-noise regimes, the signs of the AIPW scores Γ̂i will
be fairly random, and actually predicting these signs with any reliability is im-
possible. Even an optimal policy π∗ will make many “errors” according to the
classification formulation; and trying to get high accuracy according to the clas-
sification metric will only result in overfitting. It is possible to have problems
where empirical-welfare maximization works very well (in terms of improving
value relative to a status quo), but where standard classification diagnostics
applied to the formulation (5.24) would suggest poor performance.34

The role of the policy class Π We started with a non-parametric model
(i.e., µ(w)(x) and e(x) can be generic), where the welfare-maximizing unre-
stricted treatment assignment rule is simply π∗unrestr(x) = 1 ({τ(x) > 0}). How-
ever, our goal in this chapter was not to find a way to approximate π∗unrestr(·);
rather, given a pre-specified class of policies Π, we sought to learn a nearly
regret-optimal policy from Π. For example, Π could consist of linear decision
rules, k-sparse decision rules, depth-` decision trees, etc. Note, in particular,
that we never assumed that π∗unrestr(·) ∈ Π.

This problem setting may appear surprising at first glance. However, in
many applications, it’s important to consider learning over restricted policy
classes. A key reason for this is that, in policy learning problems, the features
Xi can play multiple distinct roles. First, the Xi may be needed to achieve
unconfoundedness

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi.

In general, the more pre-treatment variables we have access to, the more plau-

34As a further note of caution: We’ve shown that policy learning via empirical maximiza-
tion is computationally equivalent to weighted optimization of a classification objective. In
many applications, however, practitioners carry out classification by optimization a surrogate
objective (rather than the original classification objective), e.g., using the hinge or logistic
loss, and it may be tempting to also apply similar approximations to (5.24). The guarantees
presented here, however, do not in general extend to surrogate objectives. For example, it’s
possible to design situations where learning with a “logistic” surrogate for (5.24) makes us
prioritize people who would benefit the least from treatment (rather than the most); see
Wager [2019] for a discussion.
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sible unconfoundedness becomes. In order to have a credible model of nature,
it’s good to have flexible, non-parametric models for e(x) and µ(w)(x) using a
wide variety of features.

On the other hand, when we want to deploy a policy π(·), we should be
much more careful about what features we use to make decisions and the form
of the policy π(·). Depending on the application, there may be some features
that are required to achieve unconfoundedness, but are problematic when used
for treatment choice. This includes features that are difficult to measure in a
deployed system, features that are gameable by participants in the system, or
features that correspond to legally protected classes. In cases like this, these
features need to be kept in the dataset to identify causal effects, but the set Π
should only contain policies π that do not depend on them. Furthermore, many
applications involve functional form constraints on π(·) that could reasonably
be deployed (e.g., if the policy needs to be communicated to employees in
a non-electronic format, or audited using non-quantitative methods). Thus,
when learning policies, it’s important to be able to respond to application-
driven constraints as codified by the use of a restricted class Π of allowable
policies.

5.3 Bibliographic notes

The idea behind our discussion today was that, when learning policies, the
natural quantity to focus on is regret as opposed to, e.g., squared-error loss
on the conditional average treatment effect function. This point is argued for
in Manski [2004]. Stoye [2009] provides a discussion of exact minimax regret
policy learning with discrete covariates, while Hirano and Porter [2009] consider
asymptotic analysis in the limits-of-experiments framework.

The insight that policy learning under unconfoundedness can be framed as
a weighted classification problem—and that we can adapt well known result
results from empirical risk minimization to to derive useful regret bounds—
appears to have been independently discovered in statistics [Zhao et al., 2012],
computer science [Swaminathan and Joachims, 2015], and economics [Kitagawa
and Tetenov, 2018]. Properties of policy learning with doubly robust scoring
rules are derived in Athey and Wager [2021]. The latter paper also considers
policy learning in more general settings, such as with “nudge” interventions
to continuous treatments or with instruments used to identify the effects of
endogenous treatments. Mbakop and Tabord-Meehan [2021] consider model
selection for empirical-welfare maximization to handle policy classes with infi-
nite VC dimension, while Zhou, Athey, and Wager [2023] consider structured
treatment choice with multiple possible actions.
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In this chapter, we’ve discussed rates of convergence that scale as
√

VC(Π)/n.
This is the optimal rate of convergence we can get if seek guarantees that are
uniform over τ(x); and the rates are sharp when the strength of the treatment
effects decays with sample size at rate 1/

√
n. However, if we consider asymp-

totics for fixed choices of τ(x), then super-efficiency phenomena appear and
we can obtain faster than 1/

√
n rates [Luedtke and Chambaz, 2020]; this phe-

nomenon is closely related to “large margin” improvements to regret bounds
for classification via empirical risk minimization.

QINI curves for evaluating treatment prioritization rules were first intro-
duced in the marketing literature to quantify the value of targeted marketing
campaigns. Imai and Li [2023] provide a modern statistical treatment of QINI
curves in randomized controlled trial under the Neyman model. Yadlowsky
et al. [2021] provide a unified analysis of different methods for evaluating treat-
ment prioritization rules—including both the QINI and TOC curves—in a gen-
eral observational study setting that accommodates double machine learning.
Sun et al. [2021] use QINI curves to quantify cost-benefit exercises in settings
where treatment cost is also unknown and needs to be estimated, while Sver-
drup et al. [2023] do so in the case of treatment prioritization rules that allow
for multiple actions.

The topic of policy learning is an active area with many recent advances. For
example, Bertsimas and Kallus [2020] extend the principle of learning policies
by optimizing a problem-specific empirical value function to a wide variety of
settings, e.g., inventory management; Luedtke and van der Laan [2016] discuss
inference for the value of the optimal policy; while Kallus and Zhou [2021]
consider the problem of learning policies in a way that is robust to potential
failures of unconfoundedness.
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Chapter 6
Adaptive Experiments

In the previous chapter, we considered policy learning under a two-phase model.
In the first “exploration” phase, we had data from an experiment or an obser-
vational study that could be used to identify the effect of an intervention and
choose a policy. Then, in the second “exploitation” phase, we could deploy the
chosen policy—and reap rewards if we chose well.

This two-phase model, also called the batch learning model in the engi-
neering literature, is attractive for its conceptual and operational simplicity.
However, in many settings where units naturally arrive in a stream and there
is a cost to experimentation, using a two-phase design with pre-specified explo-
ration and exploitation phases may seem too rigid—and instead we may want
to exploit any knowledge gained during the exploration phase as soon as it’s
available. For example, if at some point in the exploration phase we become
confident we’ve already uncovered the best policy for some subgroup of study
participants, then why not just immediately use this information instead of
waiting for a pre-specified end of the exploration phase? Or, in a multi-armed
trial, if it becomes apparent that one of the arms is clearly inferior, why not
discard it and re-focus available exploration resources on the other arms?

Example 6. Schwartz, Bradlow, and Fader [2017] describe a setting where a
financial institution seeks to acquire new customers via online advertising. The
advertiser needs to choose where to advertise (e.g., on which type of websites)
and what type of ads to use, and is interested in using experimentation to
optimize these choices. The authors show how an adaptive experimentation
model enables the advertiser to seamlessly move from exploring to exploiting
information about what ads work best during the same campaign, without
needing to pre-commit to a rigid experimental sample size up front. One should
also note that, in this setting, there’s less value in having access to standard
inferential outputs from a randomized trial (e.g., in terms of confidence intervals
and summary statistics), since any learnings would likely be specific to the given
advertising campaign and may not generalize to other campaigns.
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This chapter provides a brief introduction to the design of adaptive ex-
periments, also known as multi-armed bandit algorithms in the engineering
literature. Such experiments enable the researcher to modify their data collec-
tion scheme in response to preliminary findings, with the goal improving the
quality of the collected data and/or improving the welfare of study partici-
pants. A major challenge when working with adaptive experiments is that the
samples we’re using for learning are longer independent of each other because
past outcomes affect future treatment assignments; and thus methods devel-
oped for non-adaptive experiments are no longer formally justified (and in fact
may fail badly).

Setting and notation As is standard when analyzing multi-armed adaptive
experiments, we assume that we have access to a stream of t = 1, . . . , T exper-
imental subjects that can each be assigned one among k = 1, . . . , K candidate
actions. We write Wt ∈ {1, . . . , K} for the action taken at time t and Yt for
the observed outcome (or reward), and will consider settings where Wt is a (po-
tentially randomized) function of past data. Following the potential outcomes
model, we assume that for each t there are potential outcomes {Yt(k)}Kk=1 such
that Yt = Yt(Wt).

Throughout this chapter, we will also make the following. We have access
to a stream of t = 1, . . . , T experimental subjects such that:

• The potential outcomes are independent and identically distributed across
time, i.e., {Yt(k)}Kk=1

iid∼F for some distribution F that does not depend
on t. We write µk = EF [Yt(k)] for the mean reward of the k-th arm.

• There are no covariates Xt that can be used to for targeting, and assigned
actions can only depend on past actions and outcomes.

Both of these assumptions can (and often are) relaxed in the literature. There
exist algorithms that can handle non-stationary and even non-stochastic po-
tential outcomes, and also algorithms that allow use of covariates for targeting
(in the engineering literature this is called the contextual bandit setting); see
the bibliographic notes section for references. Here, however, we only have time
to briefly scratch the surface of the literature on adaptive experiments—and
will do so in the context of the restricted setting described above.

6.1 Low-regret data collection

There are multiple objectives one can target when designing adaptive data-
collections algorithms. We will start by considering methods guided by the
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simple principle of getting high cumulative rewards (and avoiding low-reward
actions) for the t = 1, . . . , T in-sample experimental subjects. The highest
possible expected reward one can get using any data collection procedure is
Tµ∗, where µ∗ = max {µk : 1 ≤ k ≤ K} is the mean reward of the best arm in
terms of mean reward. We will assess the quality of an adaptive data-collection
procedure in terms of its regret

RT =
T∑
t=1

(µ∗ − µWt) , (6.1)

which quantifies the shortfall in rewards relative to always playing the best
arm.35 In a non-adaptive trial whereWt is uniformly distributed on {1, . . . , K},
regret scales linearly in T , i.e., RT ∼ T

∑K
k=1 (µ∗ − µk) /K. A first goal of adap-

tive experimentation schemes is to do better, and achieve sub-linear regret. In
order to do so, any algorithm will first need to explore the sampling distribu-
tion to figure out which arms k = 1, . . . , K are the most promising, and then
exploit this knowledge to attain low regret.

The upper confidence band method One notable early solution to the
explore-exploit trade-off problem in adaptive experiments in the upper confi-
dence band (UCB) algorithm of Lai and Robbins [1985]. The algorithm pro-
ceeds as follows. First, initialize each arm using t0 draws and then,

• At each time t = Kt0 + 1, Kt0 + 2, . . ., construct a confidence interval
Ûk,t for µk based on data collected up to time t− 1, and

• Pick action Wt corresponding to the confidence interval Ûk,t with the
largest upper endpoint, and observe Yt = Yt(Wt).

At a high level, the motivation behind UCB is that we always want to explore
the arm with the most upside, i.e., UCB is optimistic in the face of uncertainty
about arm rewards. If we have yet to learn much about a given arm, it will
have a long confidence interval and UCB will optimistically sample it more.
Over time, however, we’ll collect enough data from the bad arms to be fairly

35Technically, the realized in-sample regret is RYT =
∑T
t=1 (Yt(k

∗)− Yt), where k∗ is an arm
with µk∗ = µ∗. However, because the actions Wt only depend on past data, the difference in
summands Yt(k

∗)−Yt−(µ∗−µWt
) form a martingale difference sequence—and so RT and RYT

have the same expectation. By the same argument, one can see that the difference between
RYT −RT is pure noise that is not under the experimenter’s control. In our discussion here,
we will focus on RT and call it “regret”, as this most accurately quantifies the consequences
of the actions taken by the experimenter.
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sure they’re suboptimal in the sense that even the upper endpoint of their
confidence intervals isn’t competitive with rewards we could get from other
arms—and at that point UCB will stop sampling them.

There are many different variants of UCB considered in practice that arise
from different constructions for the confidence interval Ûk,t used for arm selec-
tion. To get an understanding of why UCB controls regret, we here consider a
simple UCB variant tailored to a Gaussian sampling model, i.e.,

Yt(k) ∼ N
(
µk, σ

2
)
, (6.2)

where σ2 is known. The Gaussianity and known σ and T assumptions help
simplify the analysis; one can get rid of them at the expense of a slightly more
delicate algorithm and argument.

We write the cumulative number of times the k-th arm has been drawn and
the current running average of rewards from it as

nk,t =
t∑

j=1

1 ({Wj = k}) , µ̂k,t =
1

nk,t

t∑
j=1

1 ({Wj = k})Yj, (6.3)

and select actions as

Wt ∈ argmax
{
Ûk,t

}
, Ûk,t = µ̂k,t−1 + σ

√
4 log(T )

/
nk,t−1. (6.4)

This choice is induced by the UCB construction with confidence intervals for
µk,t whose width is

√
4 log(T ) times the standard error of the estimate. The

following result shows that this algorithm in-fact achieves low regret with high
probability. The variant of UCB considered here was proposed by Auer, Cesa-
Bianchi, and Fischer [2002], who refer to this algorithm as the UCB1 algorithm.

Theorem 6.1. Under our sampling assumptions and with Gaussian36 IID po-
tential outcomes (6.2), UCB with intervals (6.4) and t0 = 1 initial draws has
regret bounded as

RT ≤ 16σ2 log(T )
∑

{k:µk 6=µ∗}

1

µ∗ − µk
+

∑
{k:µk 6=µ∗}

(µ∗ − µk) , (6.5)

with probability at least 1−K/T .

36The argument remains valid for sub-Gaussian outcomes with known scale parameter σ.
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Proof. For simplicity, we assume that there is a unique best arm with k∗ with
µk∗ = µ∗.37 Under our sampling model, regret RT can be expressed as

RT =
∑
k 6=k∗

nk,T (µk∗ − µk) . (6.6)

Our main task is thus to bound nk,T , i.e., the number of times UCB may pull
any sub-optimal arm; and it turns out that UCB is essentially an algorithm
reverse-engineered to make such an argument go through.

To this end, the first thing to check is that, for each arm k 6= k∗, we have

µ̂k,t−1 ≤ µk + σ
√

4 log(T )
/
nk,t−1 (6.7)

for all t = K+1, . . . , T with probability 1−1/T . This is true because, writing
ζk,j for the j-th time arm k was pulled, we have

P
[

sup
K<t≤T

{
µk − µ̂k,t−1 − σ

√
4 log(T )

/
nk,t−1 ≥ 0

}]
≤ P

[
sup

1≤j≤nk,T

{
µk − µ̂k,ζk,j − σ

√
4 log(T )

/
j ≥ 0

}]

= P

[
sup

1≤j≤nk,T

{
µk −

1

j

j∑
l=1

Y ′l (0)− σ
√

4 log(T )
/
j ≥ 0

}]

≤ P

[
sup

1≤j≤T

{
µk −

1

j

j∑
l=1

Y ′l (0)− σ
√

4 log(T )
/
j ≥ 0

}]
≤ T exp(−2 log(T )) = 1/T,

where the equality follows by stationarity of the data-generating process (here,
Y ′l (k) are independent draws from N (µk, σ

2)), and the last line is an appli-
cation of a sub-Gaussian tail bound with a union bound. By a repeat of the
same argument and another union bound we see that with probability at least
1−K/T ,

µk∗ ≤ µ̂k∗,t−1 + σ
√

4 log(T )
/
nk∗,t−1 (6.8)

for all t = K + 1, . . . , T , and (6.7) holds simultaneously for all k 6= k∗.

37The argument is exactly the same—but just with more notation—if we allow for multiple
optimal arms.
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When (6.7) and (6.8) hold, we can only pull any sub-optimal arm k 6= k∗

under the following (necessary but not sufficient) conditions:

Wt = k =⇒ µ̂k,t−1 + σ
√

4 log(T )
/
nk,t−1 ≥ µ̂k∗,t−1 + σ

√
4 log(T )

/
nk∗,t−1

=⇒ µ̂k,t−1 + σ
√

4 log(T )
/
nk,t−1 ≥ µk∗

=⇒ µk + 2σ
√

4 log(T )
/
nk,t−1 ≥ µk∗

=⇒ nk,t−1 ≤ 16σ2 log(T )/ (µk∗ − µk)2 .

Thus, when (6.7) and (6.8) hold, pulling the k-th arm for some k 6= k∗ simply
becomes impossible once nk,t−1 passes a certain cutoff, and so

nk,T ≤ 16σ2 log(T )/ (µk∗ − µk)2 + 1.

Plugging this into the regret expression (6.6), we obtain (6.5).

Theorem 6.1 immediately implies that UCB in fact succeeds in finding and
effectively retiring sub-optimal arms reasonably fast, thus resulting in regret
that only scales logarithmically in the regret. Interestingly, the dominant term
in (6.5) is due to “good” arms for which µ∗−µk is small; intuitively, the reason
these arms are difficult to work with is that it takes longer to be sure that
they’re sub-optimal. This implies that the cost of including some very bad
arms in an adaptive experiment may be limited, since an algorithm like UCB
will be able to discard them quickly.

Finally, one should note that the upper bound (6.5) appears to allow for
unbounded regret due to quasi-optimal arms for which µk∗ − µk is very small.
This is simply an artifact of the proof strategy that focused on the case where
effects are strong. When effects may be weak, one can simply note that the
worst-case regret due to any given arm k is upper bounded by T (µk∗ − µk);
and, combining this bound with the bound implied by (6.5), we find that the
worst-case regret for any combination of arms µk is bounded on the order of
K
√
T log(T ).

Thompson sampling UCB is a simple approach to adaptive experimen-
tation with strong bounds on excess regret from sampling sub-optimal arms.
However, the algorithm is sensitive to a number of seemingly ad-hoc choices
that are more tied to proof strategies than transparent methodological consid-
erations, and this can lead to suboptimal performance in practice. For example,
the version of the UCB algorithm given above uses relatively wide confidence
intervals with a half-length of

√
4 log(T ) standard errors; and so qualitatively,
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if we understand UCB as always choosing the arm with the most upside, then
this version of UCB is extremely optimistic in assessing upside. What would
happen if we ran UCB with intervals with a half-length of 1.96 standard er-
rors instead, i.e., with a more conventional amount of optimism regarding the
upside from each arm? In practice, this might (and often does) work well (per-
haps even better), but the proof of Theorem 6.1 would no longer go through
(because the events (6.7) and (6.8) hold would no longer uniformly hold across
all time with high probability).

Current empirical practice suggests that we can side-step this brittleness
of UCB by using algorithms that are still driven by the general principle of
optimism in the face of uncertainty, but that operationalize their optimism
in terms of Bayesian rather than frequentist reasoning. Thompson sampling
[Thompson, 1933] is one example of a simple and widely used algorithm that
does so. To implement this algorithm, we start by picking a prior Π0 for the
potential outcome distribution F . Then, for each time t = 1, . . . , T , we

• Compute probabilities ek,t−1 that each arm k is the best arm, i.e.,

ek,t−1 = PΠt−1 [µk = µ∗] , (6.9)

• Randomly choose an action Wt ∼ Multinomial(e·,t−1), and

• Observe Yt = Yt(Wt) and update the posterior Πt.

One can efficiently implement this algorithm via posterior sampling: First draw
a joint sample (µ′1, . . . , µ

′
K) ∼ Πt−1, and then set Wt = argmax {µ′k}.

Although Thompson sampling looks superficially very different from UCB,
it ends up having a similar statistical intuition behind it. Just like UCB,
Thompson sampling regularly explores every arm until it becomes effectively
sure that the arm is not good (i.e., the posterior probability of the arm be-
ing best drops below 1/T ); and intuition from, say, the Bernstein–von Mises
theorem suggests that this should happen with roughly the same amount of
information as when the upper confidence band of an arm falls below the whole
confidence interval of some better arm. Proving an analogue to Theorem 6.1 is
however beyond the scope of this presentation, and we instead refer to Agrawal
and Goyal [2017] for such a result.

From a practical perspective, Thompson sampling presents a number of
advantages relative to UCB. Thompson sampling is less sensitive to implemen-
tation choices than UCB; in fact, if one is willing to initialize the algorithm by
taking 1 draw from each arm, then one can run Thompson sampling with Π0 set
to be an improper flat prior over the real line, resulting in an algorithm with

76



no tuning parameters.38 And, in empirical evaluations, Thompson sampling
often proves itself more resilient than UCB and related algorithms [Chapelle
and Li, 2011, Wu and Wager, 2022].

6.2 Inference after adaptive data collection

After collecting data in an adaptive trial, it may also be of interest to perform
statistical inference and, e.g., give confidence intervals for the mean arm reward
parameters µk. Doing so, however, requires caution as adaptive data collection
yields non-IID data and can thus void guarantees for standard approaches to
inference. For example, in the case of estimating µk, two natural estimators
that immediately come to mind include the sample mean

µ̂AV Gk = µ̂k,T =
1

n−1
k,T

t∑
j=1

1 ({Wj = k})Yj (6.10)

and, in the case of Thompson sampling, the inverse-propensity weighted esti-
mator

µ̂IPWk =
1

T

T∑
t=1

1 ({Wt = k})Yt
et,k

. (6.11)

However, due to the adaptive data-collection scheme, neither of these estima-
tors has an asymptotically normal limiting distribution, thus hindering their
use for making confidence intervals.

The following simple illustrates the failure of the classical central limit the-
orem when working with adaptively collected data:

• We can sample outcome Yt ∼ N (µ, 1) for a single arm with unknown
mean µ.

• We first run a pilot study on n0 samples and say that the pilot study
passed if the sample average of the first n0 samples is positive (and that
it failed else).

• If the pilot study passed, we collect a further 10n0 samples, whereas if it
failed we only collect n0 further samples.

38On careful examination, it turns out that using an improper prior for Thompson sampling
is not just a simple generic choice, but can be a quasi-optimal choice from the perspective
of regret minimization [Kuang and Wager, 2024].
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Figure 6.1: Scaled distribution of µ̂AV G conditionally on passing/failing the
pilot study, and unconditionally (i.e., distribution of

√
n0 µ̂

AV G), when µ = 0.

This example is intended to capture, using a simple one-arm design, the quali-
tative behavior of Thompson sampling whereby the higher the current sample
average of an arm the more likely we are to draw from it. Figure 6.1 displays
the scaled distribution of the resulting sample average when µ = 0. We readily
see that the scaled distribution of µ̂AV G is both non-Gaussian and biased down-
wards, and so normal confidence intervals centered at µ̂AV G would not be valid
here. Nie et al. [2018] provide a general result showing that sample averages for
regret-minimizing algorithms are biased downwards in considerable generality.

Meanwhile, µ̂IPW is unbiased when available (e.g., with Thompson sam-
pling). However, as discussed in Hadad et al. [2021], it still has a non-Gaussian—
and often heavy-tailed—sampling distribution. Thus, it again cannot be used
for normal inference.

The topic how best to do inference with adaptively collected collected data

78



is still an active research topic, and a comprehensive review of the literature
is beyond the scope of this presentation. However, as a pointer to available
solutions, we here show how careful re-weighting of the data can avoid the
non-Gaussianity issues with µ̂AV G and µ̂IPW .

Consider a sequentially randomized experiment, where the treatment
probabilities et can depend on past data; Thompson sampling is an example
of a sequentially randomized experiment. Then, we define the adaptively
weighted estimate of µk as

µ̂AWk =
T∑
t=1

1 ({Wt = k})Yt√
et,k

/ T∑
t=1

1 ({Wt = k})
√
et,k

. (6.12)

The specification of this estimator may appear surprising, as units are weighted
by 1/

√
et,k rather than the more familiar 1/et,k inverse-propensity weights.

However, as shown below, this weighting scheme yields an asymptotic normality
result. We note that the regularity condition (6.14) reduces to the familiar
Lindeberg condition in the case of randomized trials with constant treatment
propensities; this condition is weak provided the et,k cannot decay too fast.

Theorem 6.2. In a sequentially randomized experiment with IID potential
outcomes, suppose that

0 < σ2
k := Var [Yt(k)] <∞ (6.13)

for all arms k = 1, . . . , K, that et,k > 0 almost surely39 and that, for all ε > 0,

lim
T→∞

1

T

T∑
t=1

E
[
(Yt − µk)2 1

({
(Yt − µk)2 ≥ ε et,k T

}) ∣∣Ft−1

]
= 0, (6.14)

where Ft−1 denotes information collected up to time t− 1. Then,

V̂
−1/2
k

(
µ̂AWk − µk

)
⇒ N (0, 1) ,

V̂k =
T∑
t=1

(
1 ({Wt = k})

(
Yt − µ̂AWk

)
√
et,k

)2 / (
T∑
t=1

1 ({Wt = k})
√
et,k

)2

.
(6.15)

39Note that the condition that et,k > 0 can in fact be omitted from the theorem statement
at the cost of some extra bookkeeping in the proof and under the convention that 0/0 = 0.
The Lindeberg-type condition (6.14) on its own already provides sufficient control on the
decay of the treatment assignment probabilities.
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Proof. We start by stating a technical result, the proof of which is deferred to
the end of this section: Under (6.13) and (6.14),

T∑
t=1

1 ({Wt = k})
√
et,k

/√
T →p ∞, (6.16)

i.e., the denominator in (6.12) grows faster than
√
T . Qualitatively, (6.16)

means that our adaptive sampling scheme collects an increasing amount of
data over time under the adaptive weighting scheme used in (6.12).

Now, to obtain a central limit theorem, we note that

µ̂AWk − µk =
T∑
t=1

1 ({Wt = k}) (Yt − µk)√
et,k

/ T∑
t=1

1 ({Wt = k})
√
et,k

, (6.17)

and start by focusing on the numerator of the above expression. Let

Mt =
t∑

j=1

1 ({Wj = k}) (Yj − µk)√
ej,k

(6.18)

be its partial sum. Because Wt is randomly chosen given information up to
time t, we see that Wt is independent of Yt(k) conditionally on information
collected up to time t− 1, and thus Mt is a martingale:

E
[
Mt

∣∣Ft−1

]
= Mt−1. (6.19)

Furthermore, thanks to our weighting scheme, we can check that the conditional
variance of each martingale step is non-random despite our use of adaptive
sampling probabilities:

Var
[
Mt

∣∣Ft−1

]
= σ2

k. (6.20)

Given these two facts, the martingale central limit theorem [Helland, 1982,
Theorem 2.5(a)] implies that

MT

/√
Tσ2

k ⇒ N (0, 1) (6.21)

whenever

lim
T→∞

1

T

T∑
t=1

E
[
(Mt −Mt−1)2 1

({
(Mt −Mt−1)2 > εT

}) ∣∣Ft−1

]
= 0 (6.22)
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for all ε > 0. In our setting

E

[
1 ({Wj = k}) (Yj − µk)2

ej,k
1

({
1 ({Wj = k}) (Yj − µk)2

ej,k
> εT

}) ∣∣Ft−1

]

= E

[
1 ({Wj = k}) (Yj − µk)2

ej,k
1

({
(Yj − µk)2

ej,k
> εT

}) ∣∣Ft−1

]
= E

[
(Yj − µk)2 1

({
(Yj − µk)2 > ε ej,k T

}) ∣∣Ft−1

]
,

meaning that (6.14) is equivalent to (6.22) and thus (6.21) holds.
We are now ready to wrap up. We first note that µ̂AWk is consistent for µk

thanks to (6.16) and (6.21). Meanwhile, under (6.14), we also have that

T∑
t=1

(
1 ({Wt = k}) (Yt − µk)√

et,k

)2 / (
Tσ2

k

)
→p 1 (6.23)

by martingale concentration [Helland, 1982, Lemma 2.3]; the same holds with
µk replaced with µ̂AWk by consistency. Thus, by (6.21) and Slutsky’s lemma,

MT

/√√√√ T∑
t=1

(
1 ({Wt = k}) (Yt − µ̂AWk )

√
et,k

)2

⇒ N (0, 1) . (6.24)

Finally (6.15) follows because denominators in µ̂AWk and V̂
1/2
k cancel out.

The proof of Theorem 6.2 reveals why the adaptively weighted estimator
µ̂AWk has a normal limiting distribution whereas the estimators µ̂AV Gk or µ̂IPWk

may not. The weighting scheme for the adaptively weighted estimator was
essentially reverse-engineered for the predictable variance condition (6.20) to
go through and thus enable application of a martingale central limit theorem.
The estimators µ̂AV Gk or µ̂IPWk do not in general have this property in adaptive
experiments. Hadad et al. [2021] refer to weights that allow for application of a
martingale central limit theorem as “variance stabilizing”, and study a family
of variance stabilized estimators that include µ̂AWk as a special case.

Proof of (6.16). It now remains to establish the remaining technical claim in
the proof of Theorem 6.2. Our first task is to check that

ET,k
/√

T →p ∞, ET,k =
T∑
t=1

√
et,k. (6.25)
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Under (6.13), we can choose an αk > 0 be such that

E
[
(Yt − µk)2 1

({
(Yt − µk)2 ≥ αk

})]
≥ σ2

k

2
.

Then, by repeatedly applying Markov’s inequality conditionally on past data,
we see that the key sum in (6.14) can be bounded from below as

1

T

T∑
t=1

E
[
(Yt − µk)2 1

({
(Yt − µk)2 ≥ ε et,k T

}) ∣∣Ft−1

]
≥ σ2

k

2

1

T

T∑
t=1

1 ({ε et,k T ≤ αk}) ≥
σ2
k

2

1

T

T∑
t=1

1
({√

et,k ≤
√
αk / (εT )

})
.

By (6.14), this expression must converge to 0 in probability for every ε > 0.
Thus, for any ε > 0, we have

√
et,k ≥

√
αk/(εT ) for all but a vanishing fraction

of units with high probability, and so (6.25) must hold.
For our next step, we form another Ft-martingale Xt with differences

Xt −Xt−1 =
√
et,k −

1 ({Wt = k})
√
et,k

.

This martingale has increments bounded from above, Xt − Xt−t ≤ 1, and
variance increments Var

[
Xt

∣∣Ft−1

]
= 1 − et,k ≤ 1. Freedman [1975, Theorem

4.1] then shows that, for any a > 0,

P [XT ≥ a] ≤ exp

[
− a2

2(a+ T )

]
. (6.26)

Now, given (6.25), we know that there exists a function r(T ) such that r(T )→
∞ and P[ET,k/(2r(T )

√
T )]→ 1. Plugging a = r(T )

√
T into the above expres-

sion, we then get

lim
T→∞

P

[
T∑
t=1

1 ({Wt = k})
√
et,k

≤
T∑
t=1

√
et,k − r(T )

√
T

]
= 0,

which, because ET,k ≥ 2r(T )
√
T with high probability, implies (6.16).

Trade-offs in adaptive study design In this chapter, we have considered
two high-level questions pertaining to adaptive experiments. First, we asked
how to collect data such as to minimize in-sample regret; and then we asked how
to build confidence intervals for mean arm rewards using adaptively collected
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data. Given this this background, it’s natural to ask whether it’s possible to
align these two tasks—and simultaneously achieve low in-sample regret and
powerful post-experiment inference.

Here, however, the answer is unfortunately an unequivocal no: Data col-
lection schemes that aggressively optimize for in-sample regret as in (6.1) will
result in fragile post-experiment inference. Bubeck, Munos, and Stoltz [2009]
provide a formal trade-off in terms of the in-sample regret achieved using a
data-collection scheme, and the post-experiment regret one could get by de-
ploying the best arm from the experiment on future data. Fan and Glynn [2021]
show that any adaptive algorithm that achieves optimal in-sample expected re-
gret will necessarily have a heavy-tailed regret distribution (i.e., the algorithm
has a small but non-negligible probability of failing completely and incurring
large regret). Finally, on a technical note, algorithms that aggressively ta-
per propensities et,k for poorly performing arms are likely to not satisfy the
Lindeberg condition (6.14), and thus may not allow for valid post-experiment
inference via the proposed method.

There are thus unavoidable trade-offs in the design of adaptive experiments,
and researchers should choose relevant data-collection strategies based on their
goals. If the goal is to quickly roll out a policy and to immediately minimize
in-sample regret for study participants, then algorithms like Thompson sam-
pling provide a natural choice. If, however, a researcher also wants to use the
collected data to guide future policy, then using algorithms that are less aggres-
sive in how fast they taper the use of suboptimal arms is preferable [Bubeck
et al., 2009, Fan and Glynn, 2021]. We also note a large literature on designing
adaptive experiments such as to maximize our chance of identifying either the
best arm [Russo, 2020] or a quasi-optimal arm [Kasy and Sautmann, 2021]
after T time-steps.

6.3 Bibliographic notes

This line of work on bandit algorithms builds on early results from Lai and
Robbins [1985] on the UCB algorithm. Lai and Robbins [1985] showed that
a variant of UCB achieves regret scaling of the form (6.5), and that this be-
havior is asymptotically optimal. Finite-sample bounds of the type given in
Theorem 6.1 are established in Auer, Cesa-Bianchi, and Fischer [2002], while
Agrawal and Goyal [2017] provide analogous bounds for Thompson sampling.
Thanks to its Bayesian specification, Thompson sampling can be generalized to
a wide variety of adaptive learning problems; see Russo et al. [2018] for a recent
survey. We also note that UCB and Thompson sampling are by far not the
only available algorithms for this task; for example, Russo and Van Roy [2018]
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propose information-directed sampling, another Bayesian heuristic which they
argue presents an attractive alternative to Thompson sampling.

In Section 6.1, we considered adaptive experiments that can quickly con-
verge on sampling the best of K available actions. The econometric setting
we used made 3 major assumptions that may not hold in applications: We did
not consider covariates Xt that can be used to guide decision making; we only
considered in-sample regret as an objective; and we assumed that the sampling
distribution is stable over time. Each of these assumptions has been relaxed
in the literature. The literature on contextual bandits allows linking poten-
tial outcomes with covariates Xt via either a parametric [Bastani and Bayati,
2020, Goldenshluger and Zeevi, 2013] or non-parametric [Gur, Momeni, and
Wager, 2022, Hu, Kallus, and Mao, 2022a, Perchet and Rigollet, 2013] spec-
ification. The literature on best-arm selection was already discussed above
[Bubeck et al., 2009, Kasy and Sautmann, 2021, Russo, 2020]. Finally, Bes-
bes, Gur, and Zeevi [2019], Liu, Van Roy, and Xu [2023] and Qin and Russo
[2022] consider different models for how the reward distribution may change
over time, and propose algorithms tailored to this setting. There is also a large
literature on the adversarial model where, by analogy to the Neyman model, no
sampling assumptions are made on the potential outcomes and the only source
of randomness is in randomized action choice; see Bubeck and Cesa-Bianchi
[2012] for a review and references.

The line of work on inference with adaptively collected data via variance-
stabilizing weighting is pursued by a number of authors including Luedtke and
van der Laan [2016], Hadad et al. [2021] and Zhang, Janson, and Murphy [2020].
One should note that this is not the only possible approach to inference in
adaptive experiments. In particular, a classical alternative to inference in this
setting starts from confidence-bands based on the law of the iterated logarithm
and its generalizations that hold simultaneously for every value of t; see Robbins
[1970] for a landmark survey and Howard et al. [2021] for recent advances. One
can also build confidence intervals using diffusion approximations for adaptive
experiments motivated by weak-signal asymptotics [Hirano and Porter, 2023,
Kuang and Wager, 2024].

Finally, all approaches to adaptive experimentation discussed today are
essentially heuristic algorithms that can be shown to have good asymptotic
behavior (i.e., neither UCB nor Thompson sampling can be derived directly
from an optimality principle). In the Bayesian case (i.e., where we have an
actual subjective prior for F rather than just a convenience prior as used by
Thompson sampling to power an algorithm with frequentist guarantees), it
is possible to solve for the optimal regret-minimizing experimental design via
dynamic programming [Gittins, 1979].
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Chapter 7
Balancing Estimators

The propensity score has played a central role in our presentation so far, in-
cluding in understanding identification of average treatment effects under un-
confoundedness, construction of efficient estimators of the average treatment
effect, and the design of adaptive experiments. However, although this presen-
tation makes it clear that the propensity score is important for causal inference,
it may still remain somewhat unclear why this is true.

Here, we will re-visit the propensity score as a statistical object, and argue
that a key function of the propensity score is to balance out—and thus elimi-
nate bias captured by—observed pre-treatment confounders. This perspective
will motivate the development of new propensity score estimators with better
end-to-end behavior when used for treatment effect estimation, and elucidate
connections between methods for average treatment effect estimation under
unconfoundedness and the broader literature on non-parametric and/or high-
dimensional inference. Note that this chapter will not consider any new tasks
in causal inference—rather, we will focus on the problem of average treatment
effect estimation under unconfoundedness and revisit the statistical principles
underlying the task. As such, this chapter may be skipped on a first reading.

The role of balance Working under our familiar basic unconfoundedness
setting from Chapter 3, recall the (oracle) inverse-propensity weighted (IPW)
estimator of the average treatment effect (ATE):

τ̂ ∗IPW =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
, e(x) = P

[
Wi = 1

∣∣Xi = x
]
. (7.1)

In Chapter 2, we showed that the oracle IPW estimator is unbiased for the
ATE, E [τ̂ ∗IPW ] = τ where τ = E [Yi(1)− Yi(0)]. The proof given in Theorem
2.2 was an abstract application of conditional independence and the chain rule
for expectations that immediately implied unbiasedness.
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In an effort to get a better understanding of the statistical function of the
propensity score, we start by revisiting the unbiasedness of IPW using a less
elegant—but more algorithmically explicit—argument. To this end, suppose
we can write the conditional expectation functions µ(w)(x) in terms of a basis
expansion, i.e.,40

µ(w)(x) =
∞∑
j=1

βj(w)ψj(x) (7.2)

for some pre-defined set of basis function ψj(·). Under reasonable regularity
conditions (and assuming unconfoundedness), we then have

τ = m(1) −m(0), m(w) =
∞∑
j=1

βj(w)E [ψj(Xi)] . (7.3)

Given this setup, we can argue that IPW is unbiased as follows. Under uncon-
doundedness, Yi = µ(Wi)(Xi) + εi with E

[
εi
∣∣Xi, Wi

]
= 0, and so (again under

regularity conditions)

E
[
WiYi
e(Xi)

]
= E

[
Wi

e(Xi)

∞∑
j=1

βj(w)ψj(Xi)

]
+

���
���

E
[
Wiεi
e(Xi)

]

=
∞∑
j=1

βj(w)E
[
Wiψj(Xi)

e(Xi)

]
=
∞∑
j=1

βj(w)E [ψj(Xi)] = m(1),

(7.4)

and similarly E [(1−Wi)Yi/(1− e(Xi))] = m(0). This argument reveals that
IPW works by re-weighting both the treated and control samples so that the
weighted average of the basis functions ψj(Xi) exactly matches the relevant
population averages.

Population vs. sample balance Oracle IPW achieves unbiasedness by cre-
ating population balance across the treated and control groups for all basis
functions ψj(Xi):

E
[
Wi ψj(Xi)

e(Xi)

]
= E [ψj(Xi)] , E

[
(1−Wi)ψj(Xi)

1− e(Xi)

]
= E [ψj(Xi)] . (7.5)

In practice, we need to work with finite samples and need to estimate propensity
scores. However, following (7.5), if the sample size n is large enough and the

40The existence of such basis representations is well known in many contexts; for example,
functions of bounded variation on a compact interval can be represented in terms of a Fourier
series. Here we will not review when such representations are available; instead, we assume
that an appropriate series representation is given.
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propensity score estimates ê(Xi) are accurate enough, then we may hope to
achieve approximate sample balance,

1

n

n∑
i=1

Wi ψj(Xi)

ê(Xi)
≈ 1

n

n∑
i=1

ψj(Xi),

1

n

n∑
i=1

(1−Wi)ψj(Xi)

1− ê(Xi)
≈ 1

n

n∑
i=1

ψj(Xi),

(7.6)

and for such sample balance in turn to imply consistency of IPW. This class
of arguments can be used to show that IPW is consistent for a wide variety to
consistent propensity score estimates ê(Xi).

The above argument is, however, incredibly loose. On the one hand, we
claim that IPW achieves consistency by creating balance in the ψj(Xi); but on
the other hand, the above argument lets sample balance (7.6) emerge indirectly
as a consequence of consistent propensity score estimation. If we believe that
good sample balance is important, shouldn’t we put more thought into how we
estimate propensity scores and optimize for sample balance as in (7.6)? The
answer to this question is affirmative; and the covariate-balancing propensity
score methods that emerge from seeking to answer it provide a major improve-
ment over basic IPW methods that do not consider balance.

7.1 Covariate-balancing propensity scores

We start by considering propensity score methods tailored to target covariate
balance under a finite-dimensional parametric specification. Suppose that Xi ∈
Rp take values in a finite-dimensional space, and that we have a linear outcome
model µ(w)(x) = x · β(w) and a logistic propensity model e(x) = 1/(1 + e−x·θ).
Because we have a linear outcome model, achieving sample balance just involves
balancing the raw covariates Xi.

The sample balance condition (7.6) involves the “≈” relation that we need
to disambiguate in order to proceed. Here, given that we’re in a low-dimensional
setting, it’s reasonable to ask for exact balance, i.e., for (7.6) to hold with equal-
ity. Then, using our logistic specification ê(x) = 1/(1 + e−x·θ̂), (7.6) becomes:

1

n

n∑
i=1

(
1 + e−Xiθ̂

)
WiXi =

1

n

n∑
i=1

Xi, (7.7)

1

n

n∑
i=1

(
1 + eXiθ̂

)
(1−Wi)Xi =

1

n

n∑
i=1

Xi. (7.8)
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Can we learn a parameter vector θ̂ for the propensity model such that the
balance conditions (7.7) and (7.8) hold?

These balance conditions are non-linear systems of equations that may at
first glance seem challenging to solve. However, it turns out that—under non-
degeneracy conditions—the solution to (7.7) can equivalently be written as the
optimum of the following convex minimization problem,

θ̂ = argminθ

{
1

n

n∑
i=1

`
(1)
θ (Xi, Yi, Wi)

}
,

`
(1)
θ (Xi, Yi, Wi) = Wie

−Xiθ + (1−Wi)Xiθ,

(7.9)

so it can readily be solved via numerical methods such as Newton descent.
Meanwhile, the solution to (7.8) is equivalent to

θ̂ = argminθ

{
1

n

n∑
i=1

`
(0)
θ (Xi, Yi, Wi)

}
,

`
(0)
θ (Xi, Yi, Wi) = (1−Wi)e

Xiθ −WiXiθ.

(7.10)

Now, one subtlety here is that we may be interested in a parameter vector θ̂
that solves both (7.7) and (7.8) simultaneously. This, however, is not in general
possible (because it would require solving 2p equation using p free parameters),
but neither is it necessary: If the role of the propensity model is simply to create
balance, then if it’s convenient there’s no strong reason not to use two different
propensity models in the context of a single ATE estimator.

Putting all these pieces together to create an IPW estimator of the ATE
results in a covariate-balancing propensity score (CBPS) estimator:

θ̂(w) = argminθ

{
1

n

n∑
i=1

`
(w)
θ (Xi, Yi, Wi)

}
, for w = 0, 1

τ̂CBPS =
1

n

n∑
i=1

(
1 + e−Xiθ̂(1)

)
WiYi −

1

n

n∑
i=1

(
1 + eXiθ̂(0)

)
(1−Wi)Yi.

(7.11)

The following result shows that, unlike the oracle IPW estimator which is unbi-
ased but with unnecessarily large variance (Theorem 2.2) or generic IPW with
estimated propensity scores which is consistent but doesn’t necessarily have a
good rate of convergence, the above CBPS estimator has excellent statistical
properties: It is

√
n-consistent with and asymptotically normal sampling dis-

tribution, and achieves the same asymptotic variance as the AIPW estimator
studied in Chapter 3.
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Theorem 7.1. We have samples {Xi, Yi(0), Yi(1), Wi}
iid∼P taking values in

Rp×R×R×{0, 1} such that we get to observe (Xi, Yi, Wi) where Yi = Yi(Wi),
and that unconfoundedness holds, {Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi. Suppose there is a
c > 0 for which the following exponential moments are finite,41

E
[
ec‖Xi‖2

e(Xi)

]
<∞, E

[
ec‖Xi‖2

1− e(Xi)

]
<∞, (7.12)

and that the feature covariance matrix has full rank, E
[
X⊗2
i

]
� 0. Suppose

furthermore that both the linear outcome model µ(w)(x) = x · β(w) and the
logistic propensity model e(x) = 1/(1 + e−x·θ) are well specified with ‖θ‖2 <∞,
and that the conditional variances σ2

w(x) = Var
[
Yi(w)

∣∣Xi = x
]

are uniformly
bounded, σ2

w(x) ≤M . Then τ̂CBPS is consistent and

√
n (τ̂CBPS − τ)⇒ N

(
0, Var [τ(Xi)] + E

[
σ2

0(Xi)

1− e(Xi)
+
σ2

1(Xi)

e(Xi)

])
. (7.13)

Proof. We start by examining the loss functions `
(1)
θ (x, y, w) given above, and

its expectation

L(1)(θ) = E
[
`

(1)
θ (Xi, Yi, Wi))

]
.

The analysis of `
(0)
θ (x, y, w) and L(0)(·) is essentially identical, and so we do

not carry it out here. First, note that

∇2`
(1)
θ (x, y, w) = w e−θ·x x⊗2 � 0,

i.e., this loss functions are convex as claimed. Next, assuming that the logistic
propensity model is well specified (with true parameter value θ), we see that
for any θ′

L(1)(θ
′) = E

[
e−Xiθ

1 + e−Xiθ
eXi(θ−θ

′) +
1

1 + eXiθ
Xiθ

′
]
,

which, because E
[
ec‖x‖2

]
<∞ thanks to (7.12), is finite for any θ′ such that

‖θ − θ′‖2 ≤ c. Finally, at the true parameter value θ,42

∇L(1)(θ) = 0, ∇2L(1)(θ) = E
[
e(Xi)X

⊗2
i

]
� 0,

i.e., θ is in fact a minimizer of L(1)(·); and, by convexity of L
(1)
θ and strong

convexity at θ, it is the unique minimizer L(1)(·).
41This exponential moment condition is generally weaker than the strong overlap assump-

tion made in Chapter 3. Note that, under the propensity model used here, strong overlap
would follow from assuming that ‖Xi‖ is uniformly bounded.

42The fact that E
[
e(Xi)X

⊗2
i

]
� 0 follows immediately from our assumption that

E
[
X⊗2i

]
� 0 and the fact that 0 < e(Xi) < 1 almost surely in our setting.
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Given these preliminaries, we can use standard results for convex empirical
risk minimization [e.g., Van der Vaart, 1998, Theorem 5.7 and Example 19.8]
to check that θ̂(1) is consistent, i.e., θ̂(1) →p θ. Thus, in particular, we see that

θ̂(1) must be finite with probability going to 1. It must thus (with probability
going to 1) be a critical point of the loss function,

∇

(
1

n

n∑
i=1

Wie
−Xiθ̂(1) + (1−Wi)Xiθ̂(1)

)
= 0,

which in turn is equivalent to θ̂(1) solving (7.7).

Applying an analogous analysis to θ̂(0) and plugging these balance condi-
tions into (7.11), we can use well-specification of the linear outcome model to
verify that on the with-probability-tending-to-1 event where θ̂(1) solves (7.7)

and θ̂(0) solves (7.8),

τ̂CBPS =
1

n

n∑
i=1

(
Xi

(
β(1) − β(0)

)
+ (2Wi − 1)

(
1 + e−(2Wi−1)Xiθ̂(Wi)

)
εi

)
,

=
1

n

n∑
i=1

(
τ(Xi) +

Wi

e(Xi)
εi −

1−Wi

1− e(Xi)
εi

)
+

1

n

n∑
i=1

(
e−Xiθ̂(1) − e−Xiθ

)
Wiεi −

1

n

n∑
i=1

(
eXiθ̂(0) − eXiθ

)
(1−Wi)εi,

where εi = Yi − Xiβ(Wi). Now, the first summand above is familiar from our
earlier discussions (e.g., in Chapter 2), and satisfies (7.13).

It remains to check that the last two terms are asymptotically negligible on
the 1/

√
n scale. To this end, note that this term is mean-zero conditionally on

{Xi, Wi} (and thus also the θ̂(w)), and that

nE

( 1

n

n∑
i=1

(
e−Xiθ̂(1) − e−Xiθ

)
Wiεi

)2 ∣∣ {Xi, Wi}


=

1

n

n∑
i=1

(
e−Xiθ̂(1) − e−Xiθ

)2

Wiσ
2
1(Xi)

≤ M

n

n∑
i=1

(
e−Xiθ̂(1) − e−Xiθ

)2

Wi

=
M

n

n∑
i=1

(
eXi(θ−θ̂(1)) − 1

)2

e−2XiθWi.
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We know that, by consistency, ‖θ − θ̂(1)‖2 ≤ δ/2 with probability tending to 1
for any δ > 0, and so, again with probability tending to 1, the above expression
is bounded by

. . . ≤ 2M

n

n∑
i=1

(
eδ‖Xi‖2 + 1

)
e−2XiθWi

= OP
(
E
[(
eδ‖Xi‖2 + 1

)
e−2Xiθ /

(
1 + e−Xiθ

)])
= OP

(
E
[
eδ‖Xi‖2

(
1 + e−Xiθ

)])
,

where the steps above were by Markov’s inequality on the 2nd line and by
direct algebraic manipulations on the 3rd line. This expression is finite for any
δ ≤ c by (7.12); and tends to 0 as δ → 0 by continuity. Thus, by consistency
of θ̂(1),

nE

( 1

n

n∑
i=1

(
e−Xiθ̂(1) − e−Xiθ

)
Wiεi

)2 ∣∣ {Xi, Wi}

→p 0,

and so by Chebyshev’s inequality this term is on the 1/
√
n scale as we sought

to show. Applying an analogous argument to the term involving θ̂(0) completes
the proof.

Thus, if we believe in a linear-logistic specification and want to use an
IPW estimator, then we should learn the propensity model by minimizing the
covariate-balancing loss function rather than by the usual maximum likelihood
loss used for logistic regression. Maximum likelihood is asymptotically optimal
from the perspective of estimating the logistic regression parameters θ, but
that’s not what matters here. When estimating the ATE via IPW, what we
need from the inverse-propensity weights is for them to create balance as in
(7.6); and we achieve good results with IPW when using covariate-balancing
propensity scores that directly target this goal.

Exercise 8 in Chapter 16 expands on the result given above, and also estab-
lishes double-robustness properties for τ̂CBPS that hold if only one of the linear
or logistic models is well specified. Exercise 9 studies a covariate-balancing
propensity score estimator that targets the average treatment effect on the
treated.

Remark 7.1. The estimator (7.11) is not the first covariate-balancing propen-
sity score estimator encountered in this book. In Chapter 2, we considered a
setting where the feature space X is discrete, and found that the natural strat-
ified estimator τ̂STRAT could be interpreted as an IPW-estimator with a smart
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choice of estimated propensities that enable efficient large sample behavior; see
Theorem 2.1 and (2.17). Further examination reveals that the propensity scores
underlying τ̂STRAT achieve exact sample balance for indicators 1 ({Xi = x}) for
all x ∈ X , and that τ̂STRAT is equivalent to τ̂CBPS for a saturated model. Thus,
conceptually, we can think of covariate-balancing propensity score methods as
the natural generalization of stratified treatment effect estimation for when X
takes on continuous values.

7.2 Approximate balance and augmented estimators

We established above that, when working in a low-dimensional parametric set-
ting, propensity score methods that target exact finite-sample balance as in
(7.7) and (7.8) have a number of good statistical properties. In some set-
tings, however, achieving exact balance may not be realistic. In some modern
applications, the covariates Xi ∈ Rp may take values in a high-dimensional
space with p � n (e.g., Xi may represent a patient’s genome); and in this
case it’s generally not possible to find weights on n samples that exactly solve
p covariate-balancing moment conditions. Or, as in our motivating example
7.2, we may be interested in a setting where we use an infinite sieve to ap-
proximate a non-parametric function, and in this case we have infinitely many
covariate-balancing moment conditions to worry about.

Thankfully, even when exact balance is unachievable, we can still obtain
good results via propensity-score methods that aim for approximate balance

sup
j=1, 2, ...

∣∣∣∣∣ 1n
n∑
i=1

Wi ψj(Xi)

ê(Xi)
− ψj(Xi)

∣∣∣∣∣ ≤ t,

sup
j=1, 2, ...

∣∣∣∣∣ 1n
n∑
i=1

(1−Wi)ψj(Xi)

1− ê(Xi)
− ψj(Xi)

∣∣∣∣∣ ≤ t,

(7.14)

for some small tolerance parameter t. When working with approximate balance,
plain IPW-type estimator as considered above may dominated by bias and no
longer work well; however, using augmented IPW-type estimators can address
the issue. The reason augmented estimators help with approximate balance is
closely tied to the (strong) double robustness of augmented IPW discussed in
Chapter 3: A reasonably accurate regression adjustment can mitigate the bias
due to non-exact balance without introducing excess errors in doing so.

A comprehensive review of approximately balancing methods for high-
dimensional and/or non-parametric treatment effect estimation problems is
beyond the scope of this presentation. Instead, we will here summarize one ap-
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proach tailored to the high-dimensional setting with a sparse, linear outcome
model, and present references for further reading at the end of the chapter.

Suppose that the basic unconfoundedness model from Chapter 3 holds with
high-dimensional controls Xi ∈ Rp, where p may be much larger than n. Sup-
pose furthermore that the outcome model is sparse and linear, µ(w)(x) = x·β(w)

with ‖β(w)‖0 ≤ k for some reasonably small bound on the number of non-zero
parameters k, where ‖v‖0 counts the number of non-zero entries in 0. Note
that we are not making any parametric assumptions on the propensity model
here, and simply assume strong overlap η ≤ e(Xi) ≤ 1− η.

Given this setup, Athey, Imbens, and Wager [2018b] consider learning
weights γ̂i by directly minimizing an approximate balance criterion:

γ̂(1) = argminγi≥0, t≥0

1

n

∑
Wi=1

γ2
i + ζ n t2

subject to

∣∣∣∣∣ 1n
n∑
i=1

(γiWi − 1)Xi

∣∣∣∣∣ ≤ t for all j = 1, . . . , p,

(7.15)

and γ̂(0) is derived analogously. Conceptually, we can interpret these weights
as “1/ê(Xi) = γ̂

(1)
i ”, etc., but here the weights aren’t derived from a paramet-

ric propensity model. We can then use these approximate balancing weights
to derive an augmented balancing estimator modeled after the AIPW con-
struction,

τ̂AB =
1

n

n∑
i=1

Xi

(
β̂(1) − β̂(0)

)
+Wiγ̂

(1)
i

(
Yi −Xiβ̂(1)

)
− (1−Wi)γ̂

(0)
i

(
Yi −Xiβ̂(0)

)
,

(7.16)

where the β̂(w) are estimated via some method applicable to sparse, high-
dimensional data such as the lasso [Tibshirani, 1996]. The key motivation
behind this construction is the following lemma.

Lemma 7.2. Under unconfoundedness and SUTVA, suppose furthermore that
µ(w)(x) = x·β(w), and that β̂(w) is an estimator of β(w) with L1-norm estimation
error bounded by C(w) for w = 0, 1:

∥∥∥β̂(w) − β(w)

∥∥∥
1
≤ C(w), ‖v‖1 =

p∑
j=1

|vj| . (7.17)
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Then, the augmented balancing estimator (7.16) satisfies

τ̂AB =
1

n

n∑
i=1

Xi

(
β(1) − β(0)

)
+Wiγ̂

(1)
i εi − (1−Wi)γ̂

(0)
i εi + E,

|E| ≤ C(0)t̂
(0) + C(1)t̂

(1),

(7.18)

where the t̂(w) are the bias parameters in the solution to the optimization prob-
lem (7.15) and εi = Yi −Xiβ(Wi).

Proof. Thanks to linearity of µ(w)(x), we immediately get that the first line of
(7.18) holds with error term

E =
1

n

n∑
i=1

Xi

(
β̂(1) − β̂(0)

)
−Xi

(
β(1) − β(0)

)
+Wiγ̂

(1)
i Xi

(
β(1) − β̂(1)

)
− (1−Wi)γ̂

(0)
i Xi

(
β(0) − β̂(0)

)
=

1

n

n∑
i=1

(
1−Wiγ̂

(1)
i

)
Xi

(
β̂(1) − β(1)

)
− 1

n

n∑
i=1

(
1− (1−Wi)γ̂

(0)
i

)
Xi

(
β̂(0) − β(0)

)
An application of Hölder’s inequality then gives

|E| ≤

∥∥∥∥∥ 1

n

n∑
i=1

(
1−Wiγ̂

(1)
i

)
Xi

∥∥∥∥∥
∞

∥∥∥β̂(1) − β(1)

∥∥∥
1

+

∥∥∥∥∥ 1

n

n∑
i=1

(
1− (1−Wi)γ̂

(0)
i

)
Xi

∥∥∥∥∥
∞

∥∥∥β̂(0) − β(0)

∥∥∥
1
,

which is equivalent to the bound we seek to show.

The upshot is that, ignoring the error term E, the expression for τ̂AB given
in (7.18) has the familiar form obtained with efficient estimators of the ATE in
Chapter 3. Thus, if we can show that E is negligible on the 1/

√
n-scale, this

result strongly suggests that we should expect good statistical behavior from
τ̂AB. One wrinkle that’s beyond the scope of this presentation is to provide
a precise characterization of what the γ̂(w) converge to;43 however, one simple

43See Hirshberg and Wager [2021] for conditions under which the γ̂(w) are consistent for the
inverse-propensity weights, and thus |E| � 1/

√
n together with Lemma 7.2 imply efficiency

in the sense discussed in Chapter 3.
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observation is that if we can control the average second moment of the γ̂(w)

(as will be done below), then (7.18) together with an error bound |E| � 1/
√
n

implies that τ̂AB is
√
n-consistent and asymptotically unbiased.

It now remains to establish conditions under which E is bounded. Under
a widely used assumption on the covariate distribution called the “restricted
eigenvalue condition” and under a sparsity bound ‖β(w)‖0 ≤ k (i.e., and as-
sumption that the true parameter vector has at most k non-zero entries), the
lasso can achieve 1-norm error [e.g., Negahban et al., 2012]∥∥∥β̂(w) − β(w)

∥∥∥
1

= OP

(
k

√
log(p)

n

)
. (7.19)

Meanwhile, the imbalance of approximate balancing weights can be controlled
via the following result.

Lemma 7.3. Suppose that strong overlap holds, η ≤ e(Xi) ≤ 1 − η for some
η > 0, that the features Xi are bounded |Xi| ≤ M . Then, with probability
at least 1 − δ, the solution to the approximate balancing program (7.15) with
tuning parameter ζ = 1/(4 log(p)) has a solution satisfying

1

n

∑
Wi=1

(
γ̂

(1)
i

)2

= OP (1) , t̂(1) = OP

(√
log(p)

n

)
. (7.20)

Proof. Consider the value of the objective function in (7.15) if we were to
plug-in the true propensity scores γ∗i = 1/e(Xi). This choice would induce a
worst-case imbalance

t∗ =

∥∥∥∥∥ 1

n

n∑
i=1

(
Wi

e(Xi)
− 1

)
Xi

∥∥∥∥∥
∞

.

Now, for every j = 1, . . . , p, we have E [(Wi/e(Xi)− 1)Xij] = 0 and, thanks to
strong overlap and boundedness, we have |(Wi/e(Xi)− 1)Xij| ≤ M/η. Thus,
we can use Hoeffding’s inequality and a union bound to verify that,

P

[
|t∗| ≥ M

η

√
4 log(p)

n

]
≤ 2

p
.

A second application of Hoeffding’s inequality to the first part of the objective
and plugging in our choice for ζ then shows that,

P

[
1

n

n∑
i=1

Wi

e2(Xi)
+ nζ (t∗)2 ≥ E

[
1

e(Xi)

]
+

1

η2

√
2 log(p)

n
+
M2

η2

]
≤ 4

p
.
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Now, the true inverse-propensity scores γ∗i are simply one feasible solution to
the optimization problem (7.15), whereas γ̂(1) was chosen such as to make the
optimization objective as small as possible. Thus, by monotonicity, we must
also have

P

[
1

n

∑
Wi=1

(
γ̂

(1)
i

)2

+ nζ
(
t̂(1)
)2 ≥ E

[
1

e(Xi)

]
+

1

η2

√
2 log(p)

n
+
M2

η2

]
≤ 4

p
.

The desired conclusion follows by noting that all terms in the objective are
non-negative, and so must also be individually controlled by the given upper
bound.

Putting together the pieces, we can use (7.19) and (7.20) to show that, under
a sparsity bound ‖β(w)‖0 ≤ k, the error term E in Lemma 7.2 is bounded to
order |E| = OP (k log(p) / n). It is thus negligible on the 1/

√
n-scale whenever

the sparsity level is controlled as k �
√
n/ log(p). This sparsity condition

is familiar from the literature on high-dimensional inference [Javanmard and
Montanari, 2014, Zhang and Zhang, 2014], and corresponds to the weakest
sparsity condition under which debiased lasso methods enable valid inference
without further assumptions knowledge about the distribution of the covariates
Xi. This connection is not an accident, and the augmented balancing method
presented here is in fact closely connected to debiased lasso methods for high
dimensional inference; see Athey, Imbens, and Wager [2018b] for a discussion
and further references.

Remark 7.2. We earlier made a claim that, when we have weights that achieve
approximate (but not exact) balance, augmented estimators of the form (7.16)
should be used. We are now in a position to substantiate this claim: Suppose
that we are in a high-dimensional setting and use weights (7.15) to form an
IPW-type estimator

τ̂ =
1

n

n∑
i=1

(
Wiγ̂

(1)
i Yi − (1−Wi)γ̂

(0)
i Yi

)
. (7.21)

We can then use Lemma 7.3 to control the bias of this estimator; however,
the resulting bias bound will generally be of order

√
log(p)/n, and this bound

dominates the error of the estimator when p can grow with n. Thus, our
analysis only yields

√
n-consistency in high dimensions when approximately

balancing weights are used in an augmented estimator.

Remark 7.3. In comparing different methods discussed in this chapter, one nat-
ural question to ask is: What happens if we apply the direct balance-seeking
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strategy (7.15) in a low-dimensional setting, and target exact rather than ap-
proximate balance? This results in treated weights

γ̂(1) = argminγi≥0

{
1

n

∑
Wi=1

γ2
i :

1

n

n∑
i=1

(γiWi − 1)Xi = 0

}
, (7.22)

and analogous control weights; note that this optimization problem will gen-
erally only be feasible when both the number of treated units and the number
of control units is greater than p. If we have exact balance, then using an aug-
mented form as in (7.16) is no longer necessary; in fact, exact balance means
that the regression adjustment term gets exactly canceled out and so the aug-
mented estimator is numerically equal to a non-augmented one [Robins et al.,
2007].44

7.3 Bibliographic notes

The key role of covariate balance for average treatment effect estimation under
unconfoundedness has long been recognized, and a standard operation proce-
dure when working with any weighted or matching-type estimators is to use
balance as a goodness of fit check [Imbens and Rubin, 2015]. For example,
after fitting a propensity model by logistic regression, one could check that the
induced propensity weights satisfy a sample balance condition of the type (7.6)
with reasonable accuracy. If the balance condition is not satisfied, one could
try fitting a different (better) propensity model.

The idea of using covariate balance as an idea to guide propensity esti-
mation (rather than simply as a post-hoc sanity check) is more recent. Early
proposals from different communities include Graham, Pinto, and Egel [2012]
Hainmueller [2012] and Imai and Ratkovic [2014]; a unifying perspective on
these methods via covariate-balancing loss functions is provided by Zhao [2019].
Zubizarreta [2015] proposed learning weights that achieve balance without go-
ing via an explicit application of IPW in the context of a parametric propensity
model. Iacus, King, and Porro [2012] proposed coarsening a continuous covari-
ate space into a finite number of regions, and then applying a stratified esti-
mator over these regions to achieve balance.45 The term “covariate-balancing

44It is also interesting to note that, if we use the exact balancing construction (7.22)
and omit the positivity constraint γi ≥ 0, then the induced IPW-type estimator (7.21) is
numerically equivalent to the interacted OLS regression estimator (1.14). This connection
can be proven directly using elementary techniques; one can also argue for this connection
by noting that it is equivalent to the Gauss-Markov theorem.

45One finite-sample consideration with this approach is that one may end up with regions
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propensity score” was coined by Imai and Ratkovic [2014], while our presen-
tation given in Chapter 7.1 most closely builds on Graham, Pinto, and Egel
[2012] and Zhao [2019].

Our presentation in Chapter 7.2 was adapted from Athey, Imbens, and
Wager [2018b], who showed that approximately balancing weights and aug-
mented estimators can be used for inference about average treatment effects
with high-dimensional controls under a sparse, linear outcome model. Tan
[2020] pairs an augmented construction with a lasso-penalized variant of the
covariate-balancing propensity score estimator (7.10) to estimate average treat-
ment effects in a high-dimensional linear-logistic specification. Kallus [2020]
and Hirshberg and Wager [2021] consider balancing (and augmented balanc-
ing) methods in a non-parametric setting, and derive weights that approxi-
mately balance all functions in an infinite-dimensional space (e.g., all functions
in a given smoothness class). In particular, Hirshberg and Wager [2021] show
that if the class of balanced functions is not too large and spans the true
inverse-propensity weightin functions 1/e(·) and 1/(1 + e(·)), then augmented
approximately balancing estimators of the average treatment effect are efficient
in the sense of Chapter 3.2 under weak conditions.

Finally, the principles behind balanced estimation apply more broadly than
to average treatment effect estimation, and can in fact be used to estimate
a wide class of econometric targets. The Riesz representer theorem gives
conditions under which estimands θ that depend linearly on the sampling
distribution—this includes quantities such as average derivatives and average
partial effects—can be characterized as weighted averages θ = E [γ(Xi, Wi)Yi]
for a weight function γ(·) called the Riesz representer. In the case of ATE
estimation under unconfoundedness and with a binary treatment, the Riesz
representer is γ(x,w) = w/e(x)−(1−w)/(1−e(x)), and thus IPW for ATE es-
timation is in fact a special case of Riesz-representer weighting. Chernozhukov
et al. [2022a] use this perspective to develop doubly robust estimators for a
wide class of targets by replacing the propensity-estimation step with esti-
mation of the Riesz representer. Hirshberg and Wager [2021] show that the
balancing weights construction (7.15) effectively yields a penalized empirical
Riesz representer, and thus their method (and results) directly extend to the
general setting of Chernozhukov et al. [2022a]. Chernozhukov, Newey, and
Singh [2022b] provide a general recipe for machine-learning based estimation
of Riesz representers that can be used to automate the construction of double
machine learning estimators for generic linear targets.

with only treated (or control) observations, and such regions cannot be balanced. Thus, data
in such regions needs to be discarded, resulting in a loss of power—and potentially also bias.
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Chapter 8
Regression Discontinuity Designs

The cleanest and most straight-forward approach to treatment effect estimation
is using approaches justified by random treatment assignment—where random-
ization can either be explicit (as in randomized controlled trials) or implicit (as
in observational study analyses under an unconfoundedness assumption). All
methods discussed in the book so far fall within this category.

In applied work, however, there’s also often interest in drawing causal in-
ferences using data where it is not realistic to assume that treatment is as
good as random (even after controlling for observed pre-treatment covariates),
and there exist a number of widely used econometric methods for identifying
and estimating causal effects in settings without random treatment assignment.
This chapter—as well as the following ones—will provide a brief introduction
to such quasi-experimental approaches to causal inference. We use the term
“quasi experimental” to emphasize that these approaches are still framed us-
ing concepts from randomized experiments—such as potential outcomes and
average treatment effects—but require econometric innovations to compensate
for the lack of random treatment assignment.

Setting and notation This chapter is about the regression discontinuity
design (RDD), which is a simple and widely used quasi-experimental design.
In a simple RDD, we are interested in the effect of a binary treatment Wi

on a real-valued outcome Yi, and posit potential outcomes {Yi(0), Yi(1)} such
that Yi = Yi(Wi). However, unlike in a randomized trial, we do not take the
treatment assignment Wi to be random. Instead, we assume there is a running
variable Zi ∈ R and a cutoff c, such that Wi = 1 ({Zi ≥ c}). This setting could
arise, e.g., in education, where Zi is a standardized test score and students
with Zi ≥ c are eligible to enroll in an honors program, or in medicine, where
Zi is a severity score, and patients are prescribed an intervention once Zi ≥ c.

Qualitatively, the main idea of a regression discontinuity is that although
treatment assignment Wi is not randomized, it’s almost as good as random
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when Zi is in the vicinity of the cutoff c. People with Zi close to c ought to
all be similar to each other on average, but only those with Zi ≥ c get treated,
and so we can estimate a treatment effect by comparing people with Zi right
above versus right below 0.

Example 7. Lee [2008] studies incumbency advantage in US House elections
by examining close elections. He compares the probability that a given political
party wins a House seat in an election cycle when they just barely won that seat
in the previous cycle vs. when they just barely lost. Validity of this approach
hinges on an understanding that results of close elections are unpredictable
and subject to idiosyncratic factors (e.g., perhaps a rain storm on election day
caused differential attrition in turnout that moved the two-party vote share by
a small amount), and that congressional districts where one party won, say,
51% vs. 49% of the two-party vote should have roughly the same distribution of
potential confounding factors. Then, once we’ve established that such congres-
sional districts are ex-ante comparable, we can obtain valid causal estimates
via the regression-discontinuity approach.

Why propensity score methods can’t be used in RDDs Before dis-
cussing methods for estimation in regression discontinuity designs, it’s helpful
to consider why our previously considered approaches (such as IPW) don’t ap-
ply. As emphasized in our discussion so far, the two assumptions invariably
required for propensity-score methods to work are:

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Zi, unconfoundedness, and (8.1)

0 < P
[
Wi = 1

∣∣Zi] < 1, overlap. (8.2)

Taken together, unconfoundedness and overlap mean that we can view our
dataset as formed by pooling many small randomized trials indexed by differ-
ent values of Zi; then, unconfoundedness means that treatment assignment is
exogenous given Zi, while overlap means that randomization in fact occurred
(one can’t learn anything from a randomized trial where everyone is assigned
to to the same treatment arm).

In a regression discontinuity design, we have Wi = 1 ({Zi ≥ c}), and so
unconfoundedness holds trivially (because Wi is a deterministic function of Zi).
However, overlap clearly doesn’t hold: P

[
Wi = 1

∣∣Zi = z
]

is always either 0 or
1. Thus, methods like IPW that involve division by P

[
Wi = 1

∣∣Zi], etc., are not
applicable. Instead, we’ll need to compare units with Zi straddling the cutoff
c that are similar to each other—but do not have contiguous distributions.
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8.1 Local linear regression

The most prevalent way to formalize the qualitative argument underlying RDD
is by invoking continuity. Let µ(w)(z) = E

[
Yi(w)

∣∣Zi]. Then, if µ(0)(z) and
µ(1)(z) are both continuous, we can identify the conditional average treatment
effect at z = c, i.e., τc = µ(1)(c)− µ(0)(c), via

τc = lim
z↓c

E
[
Yi
∣∣Zi = z

]
− lim

z↑c
E
[
Yi
∣∣Zi = z

]
, (8.3)

provided that the running variable Zi has support around the cutoff c. In other
words, we identify τc as the difference between the endpoints of two different
regression curves; the above figure provides an illustration.

Estimation via local linear regression A simple and robust approach
to estimation based on (8.3) is to use local linear regression, as illustrated in
Figure 8.1. We pick a small bandwidth hn → 0 and a symmetric weighting
function K(·), and then fit µ(w)(z) via weighted linear regression on each side
of the boundary,

τ̂c = argmin

{ n∑
i=1

K

(
|Zi − c|
hn

)
×
(
Yi − a− τWi − β(0) (Zi − c)− − β(1) (Zi − c)+

)2
}
,

(8.4)

where the overall intercept a and slope parameters β(w) are nuisance param-
eters. Popular choices for the weighting function K(x) include the window
function K(x) = 1 ({|x| ≤ 1}), or the triangular kernel K(x) = (1− |x|)+.

Consistency, asymptotics and rates of convergence It is not hard to
see that, under continuity assumptions as in (8.3), the local linear regression
estimator (8.4) must be consistent for reasonable choices of the bandwidth
sequence hn. However, in order to move beyond such a high-level statement
and get any quantitative guarantees, we need to be more specific about the
continuity assumptions made on µ(0)(z) and µ(1)(z).

There are many ways of quantifying smoothness, but one of the most widely
used assumptions in practice—and the one we’ll focus on today—is that the
µ(w)(z) are twice differentiable with a uniformly bounded second derivative∣∣∣∣ d2

dz2
µ(w)(z)

∣∣∣∣ ≤ B for all z ∈ R and w ∈ {0, 1} . (8.5)
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Figure 8.1: Illustration of the local linear regression estimator in RDD. The
solid blue line denotes the cutoff c, and the dashed lines are at c ± hn. The
local regression lines are in red, and the difference between the regression lines
at c yields the estimate τ̂c.

One motivation for the assumption (8.5) is that it justifies local linear regression
as in (8.4): If we had less smoothness (e.g., µ(w)(z) is just taken to be Lipschitz)
then there would be no point doing local linear regression as opposed to local
averaging, whereas if we had more smoothness (e.g., bounds on the k-th order
derivative of µ(w)(z) for k ≥ 3) then we could improve rates of convergence via
local regression with higher-order polynomials.

Given this assumption, we can directly bound the error rate of (8.4). The
following result gives the rate of convergence of local linear regression along
with a proof sketch. We refer to Imbens and Kalyanaraman [2012] for a more
precise argument, along with guidance on how to choose the scale parameter
κ for the bandwidth hn.

Proposition 8.1. Consider an RDD where the running variable has a continu-
ous distribution around the cutoff, and Var

[
Yi
∣∣Zi = z

]
≤ σ2 for all z. Suppose

furthermore that (8.5) holds for some B > 0. Then, the local linear regression
estimator (8.4) with bandwidth hn = κn−1/5 for some κ > 0 is consistent, and
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has errors scaling as
τ̂c = τc +OP

(
n−2/5

)
. (8.6)

Proof sketch. We start by taking a Taylor expansion around c, which yields

µ(w)(z) = a(w) + β(w)(z − c) +
1

2
ρ(w)(z − c),

∣∣ρ(w)(x)
∣∣ ≤ Bx2, (8.7)

while noting that τc = a(1)−a(0). Moreover, by inspection of the problem (8.4),
we see that it factors into two separate regression problems on the treated and
control samples, namely

â(1), β̂(1) = argmina,β

{∑
Zi≥c

K

(
|Zi − c|
hn

)
(Yi − a− β (Zi − c))2

}
, (8.8)

for the treated units and an analogous problem for the controls, such that
τ̂ = â(1) − â(0).

Now, for simplicity, we focus on local linear regression with the basic window
kernel K(x) = 1 ({|x| ≤ 1}). The linear regression problem (8.8) can then be
solved in closed form, and we get

â(1) =
∑

c≤Zi≤c+hn

γiYi, γi =
Ê(1)

[
(Zi − c)2]− Ê(1) [Zi − c] · (Zi − c)
Ê(1)

[
(Zi − c)2]− Ê(1) [Zi − c]2

, (8.9)

where Ê(1) [Zi − c] =
∑

c≤Zi≤c+hn(Zi − c)/ |{i : c ≤ Zi ≤ c+ hn}|, etc., denote
sample averages over the regression window. Direct calculation reveals that∑

c≤Zi≤c+hn γi = 1 and
∑

c≤Zi≤c+hn γi(Zi − c) = 0, and so by (8.7)

â(1) = a(1) +
∑

c≤Zi≤c+hn

γi ρ(1)(Zi − c)︸ ︷︷ ︸
curvature bias

+
∑

c≤Zi≤c+hn

γi
(
Yi − µ(1)(Zi)

)
︸ ︷︷ ︸

sampling noise

, (8.10)

and a similar expansion holds for â(0). Thus, recalling that our estimator is
τ̂ = â(1) − â(0) and out target estimand is τc = a(1)−a(0), we see that it suffices
to bound the error terms in (8.10).

Given our bias on the curvature, we immediately see that the “curvature
bias” term is bounded by Bh2

n. Meanwhile, the sampling noise term is mean-
zero and, provided that Var

[
Yi
∣∣Zi] ≤ σ2, has variance bounded on the order of

σ2
∑

c≤Zi≤c+hn γ
2
i . Finally, assuming that Zi has a continuous non-zero density

function f(z) in a neighborhood of z, one can check that

σ2
∑

c≤Zi≤c+hn

γ2
i ≈

4σ2

|{i : c ≤ Zi ≤ c+ hn}|
≈ 4σ2

f(c)

1

nhn
. (8.11)
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The squared bias of τ̂ thus scales as h4
n, while its variance scales as 1/(hnn).

The bias-variance trade-off is minimized at hn ∼ n−1/5, resulting in (8.6).

Remark 8.1. The n−2/5 rate is a consequence of working with bounds on the
2nd derivative of µ(w)(z). In general, if we assume that µ(w)(z) has a bounded
k-th order derivative, then we can achieve an n−k/(2k+1) rate of convergence
for τc by using local polynomial regression of order (k − 1) with a bandwidth
scaling as hn ∼ n−1/(2k+1).46 Local linear regression never achieves a parametric
rate of convergence, but can get close if µ(w)(z) is very smooth.

Remark 8.2. While Proposition 8.1 provides bounds on the estimation error of
local linear regression, it does not directly induce a method for inference about
τc. This is because, when using a bandwidth that scales at the estimation-error-
optimal rate hn ∼ n−1/5, both the bias and standard error of τ̂c. This means
that standard tools for building confidence intervals using linear regression—
which only account for variance but not bias—will understate the size of the
errors in τ̂c and generally not achieve nominal coverage rates. One simple way
to address this challenges is to rely on “undersmoothing”, and pick hn � n−1/5

so that variance dominates bias. This strategy, however, is generally not rec-
ommended, as undersmoothing results in larger-than-optimal estimation error;
and furthermore it is challenging to choose an undersmoothing bandwidth in
such a way as to credibly get good coverage in finite samples. A better approach
is to use bias-corrections that leverage higher-order smoothness; discussing how
to do so is however beyond the scope of this presentation, and we instead refer
to Calonico, Cattaneo, and Titiunik [2014] for details on this approach.

8.2 Optimized estimation and bias-aware inference

We showed above that the conditional expectation functions have bounded cur-
vature as in (8.5) and Zi has a continuous non-zero density around c (meaning
that there will asymptotically be datapoints with Zi arbitrarily close to c),
then local linear regression can estimate τc in an RDD with errors that decay
as n−2/5. Now, while this result is helpful conceptually and also motivates a
simple estimator, some applications have features that preclude direct applica-
tion of this result. First, the asymptotic argument underlying (8.3) relies on
observing data Zi arbitrarily close to the cutoff c. In practice, however, we
often have to work with discrete running variables (e.g., Zi is a test score that
takes integers value between 0 and 100), and in these cases the asymptotics

46This is an asymptotic scaling result, and not a finite-sample result. Gelman and Imbens
[2019] consider practical, finite-sample behavior of higher-order local regression adjustments
and, based on their findings, caution against using such higher-order adjustments.
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underlying Proposition 8.1 do not apply. Moreover, in many applications, we
need to work with more complicated cutoff functions (e.g., a student needs to
pass 2 out of 3 tests to be eligible for a program), and it is not immediately clear
how to adapt local linear regression to such settings in a way that preserves
statistical power.

Linear estimators for RDD In order to address these challenges and de-
velop estimators for a more general class of RDDs, we start with an abstract
observation. In the proof of Proposition 8.1, we noted that we can write the
local linear estimator as

τ̂c(γ) =
n∑
i=1

γiYi. (8.12)

for some weights γi that only depend on the running variable Zi; the specific
form of the weights induced by local linear regession with a window kernel
K(x) = 1 ({|x| ≤ 1}) is given in (8.9). We refer to estimators of this form as
linear estimators because they are linear functions of the outome vector Y .47

Now, although the local linear regression estimator (8.4) was motivated by
a regression problem, we didn’t make much use of this regression formulation in
studying τ̂c. Instead, for our formal discussion, we just used general properties
of that hold for all linear estimators of the form (8.12).

For simplicity, consider for now a setting with homoskedatic and Gaussian
errors, such that Yi(w) = µ(w)(Zi) + εi(w) with εi(w)

∣∣Zi ∼ N (0, σ2). Then,
any linear estimator (8.12) whose weights γi are only functions of the Zi satisfies

τ̂c(γ)
∣∣ {Z1, ..., Zn} ∼ N

(
τ̂ ∗c (γ) , σ2 ‖γ‖2

2

)
,

τ̂ ∗c (γ) =
n∑
i=1

γiµWi
(Zi),

(8.13)

where Wi = 1 ({Zi ≥ c}). Thus, we immediately see that any linear estimator
as in (8.12) will be an accurate estimator for τc provided we can guarantee that
τ̂ ∗c (γ) ≈ τc and ‖γ‖2

2 is small.

Minimax linear estimation Motivated by this observation, it’s natural to
ask: If the salient fact about local linear regression (8.4) is that we can write it
as an linear estimator of the form (8.12), then is local linear regression the best
estimator in this class? As we’ll see below, the answer is no; however, the best

47We note an unfortunate naming collision: When we say that local linear regression (8.4)
is a linear estimator (8.12), we use the descriptor “linear” with two different meanings.
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estimator of the form (8.12) can readily be derived in practice via numerical
convex optimization.

As noted in (8.13), the conditional variance of any linear estimator can di-
rectly be observed: it’s just σ2 ‖γ‖2

2 (again, for simplicity, we’re working with
homoskedatic errors for most of today). In contrast, the bias of linear estima-
tors depends on the unknown functions µ(w)(z), and so cannot be observed:

Bias
(
τ̂c(γ)

∣∣ {Z1, ..., Zn}
)

=
n∑
i=1

γiµWi
(Zi)−

(
µ(1)(c)− µ(0)(c)

)
. (8.14)

However, although, this bias is unknown, it can still readily be bounded given
smoothness assumptions on the µ(w)(z). For example, if the curvature of µ(w)(z)
is assumed to be bounded by B as in (8.5), then48∣∣Bias

(
τ̂c(γ)

∣∣ {Z1, ..., Zn}
)∣∣ ≤ IB(γ)

IB(γ) = sup

{
n∑
i=1

γiµWi
(Zi)−

(
µ(1)(c)− µ(0)(c)

)
:
∣∣µ′′(w)(z)

∣∣ ≤ B

}
.

(8.15)

Now, recall that the mean-squared error of an estimator is just the sum of its
variance and squared bias. Because the variance term σ2 ‖γ‖2

2 doesn’t depend
on the conditional response functions, we thus see that the worst-case mean
squared error of any linear estimator over all problems with |µ′′(w)(z)| ≤ B is
just the sum of its variance and worst-case bias squared, i.e.,

MSE
(
τ̂c(γ)

∣∣ {Z1, ..., Zn}
)
≤ σ2 ‖γ‖2

2 + I2
B (γ) , (8.16)

with equality at any function that attains the worst-case bias (8.15).
It follows that, under an assumption that |µ′′(w)(z)| ≤ B and conditionally

on {Z1, ..., Zn}, the minimax linear estimator of the form (8.12) is the one that
minimizes (8.16):

τ̂c
(
γB
)

=
n∑
i=1

γBi Yi, γB = argmin
{
σ2 ‖γ‖2

2 + I2
B (γ)

}
. (8.17)

One can check numerically that the weights implied by local linear regression
do not solve this optimization problem, and so the estimator (8.17) dominates
local linear regression in terms of worst-case MSE.

48There is no need for an absolute value inside the sup-term used to define IB(γ) because
the class of twice differentiable functions is symmetric around zero. This fact will prove to
be useful down the road.
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Deriving the minimax linear weights Of course, the estimator (8.17) is
not of much use unless we can solve for the weights γBi in practice. Luckily, we
can do so via routine quadratic programming. To do so, it is helpful to write

µ(w)(z) = a(w) + β(w)(z − c) + ρ(w)(z), (8.18)

where ρ(w)(z) is a function with ρ(w)(c) = ρ′(w)(c) = 0 and whose second deriva-
tive is bounded by B; given this representation τc = a(1) − a(0).

Now, the first thing to note in (8.18) is that the coefficients a(w) and β(w)

are unrestricted. Thus, unless the weights γi account for them exactly, such
that

n∑
i=1

γiWi = 1,
n∑
i=1

γi = 0,
n∑
i=1

γi(Zi − c)+ = 0,
n∑
i=1

γi(Zi − c)− = 0,

we can choose a(w) and β(w) to make the bias of τ̂c(γ) arbitrarily bad (i.e.,
IB(γ) =∞). Meanwhile, once we enforce these constraints, it only remains to
bound the bias due to ρ(w)(z), and so we can re-write (8.17) as{
γB, t

}
= argmin σ2 ‖γ‖2

2 +B2t2

subject to:
n∑
i=1

γiWiρ(1)(Zi) +
n∑
i=1

γi(1−Wi)ρ(0)(Zi) ≤ t

for all ρ(w)(·) with ρ(w)(c) = ρ′(w)(c) = 0

and
∣∣ρ′′(w)(z)

∣∣ ≤ 1
n∑
i=1

γiWi = 1,
n∑
i=1

γi = 0,

n∑
i=1

γiWi(Zi − c) = 0,
n∑
i=1

γi(Zi − c) = 0.

(8.19)

Given this form, the optimization should hopefully look like a tractable one.
And in fact it is: The problem simplifies once we take its dual, and it can
then be well approximated by a finite-dimensional quadratic program where
we use a discrete approximation to the set of functions with second derivative
bounded by 1; see Imbens and Wager [2019, Section II.B] for details.

Bias-aware inference The above discussion suggests that using an estima-
tor τ̂c

(
γB
)

=
∑n

i=1 γ
B
i Yi with weights chosen via (8.19) results in a good point

estimate for for τc if all we know is that |µ′′(w)(z)| ≤ B. In particular, under
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this assumption and conditionally on {Z1, ..., Zn}, it attains minimax mean-
squared error among all linear estimators. Because local linear regression is also
a linear estimator, we thus find that τ̂c

(
γB
)

dominates local linear regression
in a minimax sense.

If we want to use τ̂c
(
γB
)

in practice, though, it’s important to be able
to also provide confidence intervals for τc. And, since τ̂c

(
γB
)

balances out
bias and variance by construction, we should not expect our estimator to be
variance dominated—and any inferential procedure should account for bias.

To this end, recall (8.13), whereby conditionally on {Z1, ..., Zn}, the errors
of our estimator, err := τ̂c − τc, are distributed as

err
∣∣ {Z1, ..., Zn} ∼ N

(
bias, σ2

∥∥γB∥∥2

2

)
. (8.20)

Furthermore, the optimization problem (8.19) yields as a by-product an upper
bound for the bias in terms of the optimization variable t, namely |bias| ≤ Bt.

We can then use these facts to build confidence intervals as follows. Because
the Gaussian distribution is unimodal and symmetric,

P [|err| ≥ ζ] ≤ P
[∣∣Bt+ σ

∥∥γB∥∥
2
S
∣∣ ≥ ζ

]
, S ∼ N (0, 1) . (8.21)

Thus, we obtain level-α confidence intervals as follows:

P
[
τc ∈ Iα

∣∣ {Z1, ..., Zn}
]
≥ 1− α,

Iα =
(
τ̂c
(
γB
)
− ζBα , τ̂c

(
γB
)

+ ζBα
)
,

ζBα = inf
{
ζ : P

[∣∣Bt+ σ
∥∥γB∥∥

2
S
∣∣ > ζ

]
≤ α, S ∼ N (0, 1)

}
.

(8.22)

In addition to formally accounting for bias, note that these intervals hold con-
ditionally on Zi, and so hold without any distributional assumptions on the
running variable. This is useful when considering regression discontinuities in
non-standard settings.

Application: Discrete running variable A first example of the usefulness
of having conditional-on-Zi guarantees is when the running variable Zi has
discrete support. In this case, the regression-discontinuity parameter τc is in
general not point-identified under only the assumption |µ′′(w)(z)| ≤ B because
there may not be any data arbitrarily close to the boundary.49 And, without

49When Zi has a discrete distribution, the definition of τc via (8.3) needs careful
interpretation—as we need to be able to talk about µ(w)(z) at values of z that do not
belong to the support of the running variable. All guarantees provided here hold if we define
µ(w)(z) outside of the support of z to be an arbitrary function that interpolates between the
support points of z while satisfying |µ′′(w)(z)| ≤ B.
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point identification, any approach to inference that relies on asymptotics with
specific rates of convergence for τ̂c as discussed in the previous lecture clearly
is not applicable.

In contrast, in our case, the fact that Zi may have discrete support
changes nothing. The confidence intervals (8.22) have coverage conditionally
on {Z1, ..., Zn}, and the empirical support {Z1, ..., Zn} of the running vari-
able is always discrete, so the question of whether the Zi have a density in the
population is irrelevant when working with (8.22). The relevance of a discrete
Zi only comes up asymptotically: If Zi has a continuous density, then the con-
fidence intervals (8.22) will shrink asymptotically at the optimal rate discussed
in last lecture, namely n−2/5. Conversely, if the Zi has discrete support, the
length of the confidence intervals will not go to 0; rather, we end up in a partial
identification problem. In this context, we also note that the bias-aware in-
tervals (8.22) corresponds exactly to a type of confidence interval for partially
identified parameters proposed in Imbens and Manski [2004].

Application: Multivariate running variable So far, we have focused
on regression discontinuity designs where treatment is determined by a single
threshold: Wi = 1 ({Zi ≥ c}) for some Zi ∈ R. However, the ideas discussed
here apply in considerably more generality: One can let the running variable
Zi ∈ Rk be multivariate, and the treatment region be generic, i.e., Wi =
1 ({Zi ∈ A}) for some set A ⊂ Rk. For example, in an educational setting,
Zi ∈ R3 could measure test results in 3 separate subjects, and A could denote
the set of overall “passing” results given by, e.g., 2 out of 3 tests clearing a
pass/fail cutoff. Or in a geographic regression discontinuity design, Zi ∈ R2

could denote the location of one’s household and A the boundary of some
administrative region that deployed a specific policy.

The crux of a regression discontinuity design is that we seek to identify
causal effects via sharp changes to an existing treatment assignment policy; and
we can then apply the same reasoning as before to identify treatment effects
along the boundary of the treatment region A. That being said, while the
extension of regression discontinuity designs to general multivariate settings
is conceptually straight-forward, the methodological extensions require some
more care. In particular, it is not always clear what the best way is to generalize
local linear regression to a geographic regression discontinuity design.50

The minimax linear approach, however, extends direction to a multivariate

50When working with geographic regression discontinuities, some authors have tried to
collapse the problem by only considering a univariate running variable that codes distance
to the boundary of A. Such an approach, however, is sub-optimal from a statistical point of
view as it throws away relevant information.
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setting. When working with a multivariate running variable, one can essentially
write down (8.19) verbatim, and interpret the resulting weighted estimator
similarly to before. The resulting optimization problem is harder (one needs to
optimize over multivariate non-parametric functions with bounded curvature),
but nothing changes conceptually.

Beyond homoskedaticity So far, we have focused on estimation and in-
ference in the case where the noise εi = Yi − µ(Wi)(Zi) was Gaussian with a
known constant variance parameter σ2. In practice, of course, neither of these
assumptions is likely to hold. The upshot is that the conditional Gaussianity
result (8.20) no longer holds exactly; rather, we need to invoke a central limit
theorem to argue that

τ̂c(γ)
∣∣ {Z1, ..., Zn} ≈ N

(
τ̂ ∗c (γ) ,

n∑
i=1

γ2
i Var

[
Yi
∣∣Zi, Wi

])
. (8.23)

However, provided we’re willing to make assumptions under which the Gaussian
approximation above is valid, we can still proceed as above to get confidence
intervals. Meanwhile, we can (conservatively) estimate the conditional variance
in (8.23) via

V̂n =
n∑
i=1

γ2
i

(
Yi − µ̂(Wi)(Zi)

)2
, (8.24)

where, e.g., µ̂(Wi)(Zi) is derived via local linear regression; note that this bound
is conservative if µ̂(Wi)(Zi) is misspecified, since then the misspecifiaction error
will inflate the residuals.

That being said, one should emphasize that the estimator (8.17) is only
minimax under homoskedastic errors with variance σ2; if we really wanted
to be minimax under heteroskedasticity then we’d need to use per-parameter
variances σ2

i in (8.19). Thus, one could argue that an analyst who uses the
estimator (8.17) but builds confidence intervals via (8.23) and (8.24) is using an
oversimplified homoskedastic model to motivate a good estimator, but then out
of caution and rigor uses confidence intervals that allow for heteroskedasticity
when building confidence intervals. This is generally a good idea, and in fact
something that’s quite common in practice (from a certain perspective, anyone
who runs OLS for point estimation but then gets confidence intervals via the
bootstrap is doing the same thing); however, it’s important to be aware that
one is making this choice.

Remark 8.3. Throughout this section, we assumed that the researcher knows
that (8.5) holds with some specific B, and proceeded accordingly. In practice,
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however, the researcher needs to choose B, and this is a delicate task. The
data itself cannot be used to learn B unless one makes further smoothness
assumptions [Armstrong and Kolesár, 2018]. Armstrong and Kolesár [2020]
and Imbens and Wager [2019] propose some heuristics for conservative choices
of B that rely on global estimation of higher-order polynomials. Eckles et al.
[2020] consider a structural model for the running variable that, among other
things, implies a theory-driven bound B that can be used in (8.5).

8.3 Bibliographic notes

The idea of using regression discontinuity designs for treatment effect estima-
tion goes back to Thistlethwaite and Campbell [1960]; however, most formal
work in this area is more recent. The framework of identification in regression
discontinuity designs via continuity arguments and local linear regression is laid
out by Hahn, Todd, and van der Klaauw [2001]. Other references on regression-
discontinuity analysis via local linear regression include Cheng, Fan, and Mar-
ron [1997] who discuss optimal choices for the kernel weighting function, Imbens
and Kalyanaraman [2012] who discuss bandwidth choice, and Calonico, Catta-
neo, Farrell, and Titiunik [2019] who discuss the role of covariate adjustments.
Imbens and Lemieux [2008] provide an overview of local linear regression meth-
ods in this setting, and discuss alternative specifications such as the “fuzzy”
regression discontinuities where Wi is random but P

[
Wi = 1

∣∣Zi = z
]

has a
jump at the cutoff c.

As noted in Remark 8.2, the construction of confidence intervals via local
linear regression is challenging because, when tuned for optimal mean-squared
error, the bias and sampling error of the local linear regression estimator are of
the same order—and so basic delta-method or bootstrap based inference fails
(because it doesn’t capture bias). Several authors have considered solutions to
the problem that rely on asymptotics. Calonico, Cattaneo, and Titiunik [2014]
and Calonico, Cattaneo, and Farrell [2018] proposed bias-corrections to local
linear regression to obtain valid confidence intervals. Meanwhile, Armstrong
and Kolesár [2020] showed that uncorrected local linear regression point esti-
mates can also be used for valid inference provided we inflate the length of the
confidence intervals by a pre-determined amount; for example, in the setting of
Proposition 8.1 with an mean-square-optimal bandwidth, their proposal would
involve building 95% confidence intervals for τc as τ̂c ± 2.18 standard errors
(rather than the familiar ±1.96 standard errors).

The study of minimax linear estimators as considered in Chapter 8.2 goes
back to Donoho [1994], who showed to following result. Suppose that we want
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to estimate θ using a Gaussian random vector Y ,

Y = Kv + ε, ε ∼ N (0, σI) , θ = a · v, (8.25)

where the matrix K and vector a are know, but v is unknown. Suppose more-
over that v is known to belong to a convex set V . Then, there exists a linear
estimator, i.e., an estimator of the form θ̂ =

∑n
i=1 γiYi whose risk is within

a factor 1.25 of the minimax risk among all estimators (including non-linear
ones), and the weights γi for the minimax linear estimator can be derived
via convex optimization. From this perspective, the minimax RDD estimator
(8.17) is a special case of the estimators studied by Donoho [1994], and in fact
his results imply that this estimator is nearly minimax among all estimators
(not just linear ones).

In a first application of this principle to regression discontinuity designs,
Armstrong and Kolesár [2018] study minimax linear estimation over a class
of function proposed by Sacks and Ylvisaker [1978] for which Taylor approx-
imations around the cutoff c are nearly sharp. Our presentation in Chapter
8.2 is adapted from Imbens and Wager [2019], who consider numerical convex
optimization for flexible inference in generic regression discontinuity designs.
Kolesár and Rothe [2018] advocate worst-case bias measures of the form (8.15)
as a way of avoiding asymptotics and providing credible confidence intervals
in regression discontinuity designs with a discrete running variable. Noack
and Rothe [2024] extend methods for bias-aware inference to fuzzy regression
discontinuities.
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Chapter 9
Causal Inference with
Endogenous Treatments

When discussing methods for treatment effect estimation under unconfound-
edness, we have effectively assumed that—potentially after conditioning on
observed covariates—the treatment assignment is determined by as-good-as-
random factors that are irrelevant to the causal inference question at hand. In
other words, we have effectively assumed treatment assignment is exogenous
to the system we are studying.

In some applications, however, such exogeneity assumptions are simply not
plausible. For example, when studying the effect of prices on demand, it is
unrealistic to assume that potential outcomes of demand (i.e., what demand
would have been at given prices) are independent of what prices actually were.
Instead, it’s much more plausible to assume that prices and demand both
respond to each other until a supply-demand equilibrium is reached.

This chapter—and the next one—present basic methods and concepts for
causal inference in settings where unconfoundedness does not hold and treat-
ment assignment is instead endogenous, i.e., treatments are assigned in a way
that depends on the interplay of other variables within the system. We start
by introducing non-parametric structural equation models (SEMs) as a general
tool for reasoning about causal inference with endogenous treatment. In some
settings, SEMs can be used to prove that unconfoundedness holds (although
it may not have been obvious that it does a-priori), while in other settings
SEMs can be used to motivate new methods for causal inference without un-
confoundedness. Then, in Section 9.2, we consider a class of semiparametric
SEMs where treatment effects are assumed to be constant, and introduce in-
strumental variables regression as a powerful and flexible method for causal
inference in such settings. Finally, in Chapter 10, we revisit instrumental vari-
ables using a potential outcomes specification that’s more explicitly related to
the causal models we’ve used so far.
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9.1 Structural equation models and do-calculus

It is convenient to describe structural equation models using directed acyclic
graphs (DAGs). A directed graph with nodes indexed j = 1, . . . , p is char-
acterized by a set of edges {Eij} where Eij = 1 denotes the presence of an edge
from node i to node j and Eij = 0 denotes lack of such an edge. Within
a directed graph, a directed path is an ordered set of at least two nodes
i1, i2, . . . , ik ∈ {1, . . . , p} such that Ei1i2 = Ei2i3 = . . . = Eik−1ik = 1; the
definition of an undirected path is analogous except it only requires that either
Eijij+1

= 1 or Eij+1ij = 1 along the path. A directed graph is acyclic (i.e., a
DAG) if it contains no directed cycles, i.e., directed paths with i1 = ik. Within
a DAG, we say that that a node i is upstream of j (and that j is downstream
of i) if there exists a directed path starting at i and ending at j. We define the
set of parents of node j as the set of nodes i with Eij = 1

Now, let (Z1, ..., Zp) denote a set of p random variables relevant to a system
we want to make causal queries in. Some of the variables Zj may be observed
by the researcher, while others may not. We say that Z is generated by a
structural equation model (SEM) if there exists a DAG G with nodes
corresponding to Z1, . . . , Zp and with edge set {Eij} such that

Zj = fj (paj, εj) , (9.1)

where paj stands for the parents of Zj in the graph G (i.e., paj = {Zi : Eij = 1})
and the εj ∼ Fj are mutually independent noise terms. The key assumption
here is that relationship (9.1) holds regardless of the distribution of the εj, i.e.,
that this model describes the structure of the data-generation process and not
just its correlational structure.

Given a SEM (9.1), a causal query involves exogenously setting the values
of some nodes of the graph G, and seeing how this affects the distribution of
other nodes. Given two disjoint sets of nodes W, Y ⊂ Z, the causal effect of
setting W to w on Y is written P

[
Y
∣∣ do(W = w)

]
, and corresponds to deleting

all equations used to generate W in (9.1) and plugging in w for W in the rest.51

In the case where we intervene on a single node Zj, one can verify that

P
[
Z
∣∣ do(Zj = zj)

]
=

{
P [Z] /P

[
Zj = zj

∣∣ paj] if Zj = zj

0 else.
(9.2)

One of the major goals of (non-parametric) structural equation modeling is to
provide general methods for answering causal queries in terms of the observed

51There is a slight abuse of notation here: P
[
Y
∣∣ do(W = w)

]
is strictly speaking not a

conditional distribution; rather, again, it is the unconditional distribution of Y in the SEM
where we’ve replaced the equations for W with hard-coded values.
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distribution of X using only information provided by the structural model
(9.1). For now, we’ll not make any functional form assumptions on the model
(9.1); and, for concreteness, one may always assume that Zj is discrete and fj
indexes over distributions for Zj in terms of the values of its parents paj. In
Chapter 9.2 we’ll discuss how adding further semi-parametric structure to a
SEM can be used to justify instrumental variable methods.

Example 8. Meinshausen et al. [2016] use structural equation models to study
the relationship between the expression of different genes in the yeast saccha-
romyces cerevisiae. The authors have access to expression levels for 6,170 genes
and are interested in questions of the type: How will the expression of gene i in
the yeast be affected by inactivating gene j? To formalize this question, they
posit that gene expressions can be modeled using a DAG, and posit a linear
SEM

Zi =
∑
j∈pai

βijZj + εi,

where Zi measures the expression level of the i-th gene; the statistical task
then reduces to estimating βij in this model. They estimate these quantities
using the method of Peters, Bühlmann, and Meinshausen [2016] which assumes
cross-environment invariance of the SEM coefficients to identify causal effects.

The do-calculus One nice fact about non-parametric SEM is that there
exist powerful abstract tools for reasoning about causal queries. In particular,
Pearl [1995] introduced a set of rules, called the do-calculus, which lets us verify
whether causal queries are answerable based on the graph G underlying (9.1).

To understand do-calculus, we first need to formalize how graphs encode
conditional independence statements in terms of d-separation. Let X, Y and
Z denote disjoint sets of nodes, and let ξ be any undirected path from a node
in X to a node in Y . We say that Z blocks ξ if there is a node W on ξ such
that either (i) W is a collider on p (i.e., W has two incoming edges along ξ)
and neither W nor any of its descendants are in Z, or (ii) W is not a collider
and W is in Z. We say that Z d-separates X and Y if it blocks every path
between X and Y . The motivation behind this definition is that, if the joint
distribution P of Z can be factored in a way that respects a DAG G, i.e.,

P [Z] =

p∏
j=1

P
[
Zj
∣∣ paj(G)

]
, (9.3)

then we can deduce X ⊥⊥ Y
∣∣Z from (9.3) if and only if Z d-separates X and

Y in the graph G [Geiger, Verma, and Pearl, 1990]. Motivated by this fact, we
write d-separation as (X ⊥⊥ Y

∣∣Z)G.
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Do-calculus provides a way to simplify causal queries by referring to d-
separation on various sub-graphs of G. To this end define GX the subgraph of
G with all edges incoming to X deleted, GX the subgraph of G with all outgoing
edges from X deleted, GXZ the subgraph of G with all outgoing edges from
X and incoming edges to Z deleted, etc. Then, for any disjoint sets of edges
X, Y, Z, W the following equivalence statements hold.

1. Insertion/deletion of observations: If
(
Y ⊥⊥ Z

∣∣W, X)
GW

then

P
[
Y
∣∣ do(W = w), Z = z, X = x

]
= P

[
Y
∣∣ do(W = w), X = x

]
.

(9.4)

2. Action/observation exchange: If
(
Y ⊥⊥ W

∣∣X, Z)
GWZ

then

P
[
Y
∣∣ do(W = w), X = x, do(Z = z)

]
= P

[
Y
∣∣W = w, X = x, do(Z = z)

]
.

(9.5)

3. Insertion/deletion of actions: If
(
Y ⊥⊥ W

∣∣X, Z)
G
W (X)Z

where W (X) is

the set of W nodes that are not ancestors of any X node in GZ , then

P
[
Y
∣∣ do(W = w), X = x, do(Z = z)

]
= P

[
Y
∣∣X = x, do(Z = z)

]
.

(9.6)

When applying the do-calculus, our goal is to apply these 3 rules of inference
until we’ve reduced a causal query to a query about observable moments of P,
i.e., conditional expectations that do not involve the do-operator and that only
depend on observed random variables. As shown in subsequent work, the do-
calculus is complete, i.e., if we cannot use the do-calculus to simply a causal
query then it is not non-parametrically identified in terms of the structural
equation model; see Pearl [2009] for a discussion and references.

Back-door identification Suppose have disjoint sets of nodes X, Y, W , and
want to query P

[
Y
∣∣ do(W = w)

]
. Suppose moreover that X contains no nodes

that are downstream for W , and that X d-separates W and Y once we block
all downstream edges from W , i.e., that(

Y ⊥⊥ W
∣∣X)

GW
. (9.7)

Then, we can identify the effect of W on Y via

P
[
Y
∣∣ do(W = w)

]
=
∑
x

P [X = x]P
[
Y
∣∣X = x, W = w

]
. (9.8)
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To verify (9.8), we can use the rules of do-calculus as follows:

P
[
Y
∣∣ do(W = w)

]
=
∑
x

P
[
X = x

∣∣ do(W = w)
]
P
[
Y
∣∣X = x, do(W = w)

]
=
∑
x

P [X = x]P
[
Y
∣∣X = x, do(W = w)

]
=
∑
x

P [X = x]P
[
Y
∣∣X = x, W = w

]
,

where the first equality is just the chain rule, the second equality follows from
rule #3 because X is upstream from W and so (X ⊥⊥ W )GW , and the third
equality follows from rule #2 by (9.7).

The back-door criterion is of course closely related to unconfoundedness,
and the identification strategy (9.8) exactly matches the standard regression
adjustment under unconfoundedness. To understand the connection between
(9.7) and unconfoundedness, consider the case where Y and W are both sin-
gletons and W has no other downstream variables in G other than Y . Then,
blocking downstream arrows from W can be interpreted as leaving the effect
of W on Y unspecified, and (9.7) becomes

FY (w) ⊥⊥ W
∣∣X, (9.9)

where FY (w) = fY (w, pa−Y , εY ) leaves all but the contribution of w unspecified
in (9.1) and pa−Y denotes the parents of Y in GW . The condition is clearly
analogous to unconfoundedness (although the underlying causal model is dif-
ferent).

One useful consequence of this back-door criterion result is that we can now
reason about the main conditional independence condition (9.7) via the graph-
ical d-separation rule. Consider, the example given in Figure 9.1. By applying
d-separation above, one immediately sees that (9.7) holds if we condition on
{X1, X2} or {X2, X3}, but not if we only condition on X2. In contrast, the
classical presentation based on unconfoundedness asks the scientist to simply
assert a conditional independence statement of the type (9.9), and does not
provide tools like d-separation that could be used to reason about when such
a condition might hold in the context of slightly more complicated stochastic
models.

Front-door identification Another simple application of do-calculus arises
in the graph illustrated in Figure 9.2. We still want to compute
P
[
Y
∣∣ do(W = w)

]
, but now do not observe U and so cannot apply the back-

door criterion. However, if there exists a variable Z which, like in the graph
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W Y

X1 X2 X3

U1 U2

Figure 9.1: In this DAG, X, Y and W are observed but U is unobserved.

W Z Y

U

Figure 9.2: A DAG where front-door identification can by used. W , Z and Y
are observed, but U is not.

below, fully mediates the effect of W on Y without being affected by U , we
can use it for identification.

We proceed as follows. First, following the same line of argumentation as
before, we see that

P
[
Y
∣∣ do(W = w)

]
=
∑
z

P
[
Z = z

∣∣ do(W = w)
]
P
[
Y
∣∣Z = z, do(W = w)

]
=
∑
z

P
[
Z = z

∣∣W = w
]
P
[
Y
∣∣Z = z, do(W = w)

]
,

where the first equality is the chain rule and the second equality is from the
back-door. We have to work a little harder to resolve the second term, however.
Here, the main idea is to start by taking one step backwards before proceeding
further:

P
[
Y
∣∣Z = z, do(W = w)

]
= P

[
Y
∣∣ do(Z = z), do(W = w)

]
= P

[
Y
∣∣ do(Z = z)

]
=
∑
w′

P [W = w′]P
[
Y
∣∣Z = z, W = w′

]
,
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Z W Y

U

Figure 9.3: A DAG representing a setting where instrumental variable methods
may be used. An instrument Z, a treatment W , and an outcome Y are all
observed; but a confounder U remains unobserved.

where the first equality follows from rule #2, the second equality follows from
rule #3, and the last is just the backdoor adjustment again. Plugging this in,
we find that

P
[
Y
∣∣ do(W = w)

]
=
∑
z

P
[
Z = z

∣∣W = w
]∑

w′

P [W = w′]P
[
Y
∣∣Z = z, W = w′

]
. (9.10)

This result is called the front-door formula, and it allows for identification of
causal effects in the DAG given in Figure 9.2 even though nothing resembling
unconfoundedness holds. Interestingly, even though it queries about a do(W =
w) intervention, it still integrates over the observed distribution of P [W = w′].

9.2 Instrumental variables regression

One of the most widely used structural equation models in economics is repre-
sented by the DAG in Figure 9.3. We want to measure the effect of a treatment
W on an outcome Y . There’s an unobserved confounder U that rules out the
use of unconfoundedness-based methods. However, we do have access to an ex-
ogenous (effectively randomized) variable Z, called an instrument, that nudges
the treatment W without being affected by the confounder U .

Example 9. Angrist, Graddy, and Imbens [2000] consider a demand esti-
mation problem where Wi is the price of fish and Yi is demand, and we are
concerned that the association between Wi and Yi may be confounded by un-
observed market factors. They then propose using weather conditions as an
instrument Zi: Stormy weather makes it harder to fish (and thus raises prices),
but presumably is unrelated to the confounding market factors.

The goal of instrumental variables methods is to use the effective random-
ization provided by the instrument to identify the causal effect of W on Y .
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Doing so, however, will require making further assumptions than those im-
plicit in the SEM in Figure 9.3, as the rules of do-calculus do not enable us
to identify P

[
Y
∣∣ do(W = w)

]
in this non-parametric SEM. To see this, note

that if we omit the instrument Z from the SEM then P
[
Y
∣∣ do(W = w)

]
is

clearly not identified; and adding more nodes to a graph cannot help achieve
identification using do-calculus (since adding nodes can only make it harder to
satisfy the d-separation condition).

In order to enable progress, we further make the assumption that the struc-
tural equation for Y as in (9.1) is linear:

Y = fY (W, U, εY ) = α +Wτ + ε, (9.11)

where ε is an error term that captures the contribution of both U and εY . This
is a semiparametric specification, in that we impose a linear relation between
W and Y but let the rest of the SEM (9.1) be non-parametric. Instrumental
variables as illustrated in Figure 9.3 will prove to be very helpful in identifying
τ in the linear model τ .52

Linear structural modeling The easiest way to understand instrumental
variables regression is to work with a fully linear version of the SEM (9.1)
adapted to the DAG illustrated in Figure 9.3:

Y = α +Wτ + ε, ε ⊥⊥ Z

W = Zγ + η.
(9.12)

The fact that Z is uncorrelated with ε (or, in other words, that Z is exogenous)
then implies that

Cov [Y, Z] = Cov [τW + ε, Z] = τ Cov [W, Z] , (9.13)

and so the treatment effect parameter τ is identified as

τ = Cov [Y, Z]
/

Cov [W, Z], (9.14)

provided the denominator is non-zero.

52Although the linear form (9.11) may look familiar, the standard linear regression esti-
mator is not consistent for τ here. In the setting of Figure 9.3, U affects both W and the
error term ε, and so Cov [εi, Wi] 6= 0 in general. Thus, in large samples, the linear regression
estimator will not in general be equal to τ :

τ̂OLS →p
Cov [Yi, Wi]

Var [Wi]
=

Cov [τWi + εi, Wi]

Var [Wi]
= τ +

Cov [εi, Wi]

Var [Wi]
6= τ.
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The relation (9.14) also suggests a simple instrumental variables (IV)
regression approach to estimating τ as a ratio of sample covariances,

τ̂IV = Ĉov [Yi, Zi] / Ĉov [Wi, Zi] . (9.15)

To interpret this estimator, note that the simple linear regressions of Y and W
on Z respectively yield fitted regression coefficients

β̂Y Z = Ĉov [Yi, Zi] / V̂ar [Zi] , β̂WZ = Ĉov [Wi, Zi] / V̂ar [Zi] ,

and so τ̂IV = β̂Y Z/β̂WZ can be interpreted as the ratio of the linear regression
coefficients of Y on Z over that of W on Z.

Identifying assumptions The derivation of τ̂IV from the model (9.12) was
so simple that it’s easy to miss some important assumptions made. Before
proceeding further, we here summarize three substantively meaningful assump-
tions backed into this identification strategy:

• The instrument Zi must be exogenous, which here means εi ⊥⊥ Zi.

• The instrument Zi must be relevant, such that Cov [Wi, Zi] 6= 0.

• The instrument Zi must satisfy the exclusion restriction, meaning that
any effect of Zi on Yi must be mediated via the treatment Wi.

These three conditions can immediately be verified in the setting used here.
However, when we seek to use instrumental variables methods to identify treat-
ment effects in more complex settings, these conditions will prove to be helpful
guiding principles to understanding when instrumental variables methods work.

Optimal instruments The full linear structural model (9.12) may be re-
strictive in practice: It not only specifies a linear relationship between W and
Y , but also asks the instrument Z to have a linear effect on W . This may be
problematic if we have potential access to multiple instruments that may all
nudge our target treatment variable, or believe that our instrument may act
non-linearly.53 Thankfully, however, the above results on instrumental variables
regression extend immediately to the following more general specification,

Y = τW + ε, ε ⊥⊥ Z, Y, W ∈ R, Z ∈ Z, (9.16)

53For example, in the setting of Example 9, we may be interested in using both wind speed
and precipitation as “storminess” instruments that can nudge prices. Furthermore, we may
believe that these instruments act non-linearly (e.g., below a certain threshold there’s no
effect, and above another threshold fishing becomes impossible).
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where Z may be, e.g., a high-dimensional space. By the same argument as in
(9.13), we see that given any function w : Z → R that maps Zi to the real line

τ =
Cov [Y, w(Z)]

Cov [W, w(Z)]
(9.17)

provided the denominator is non-zero (i.e., provided w(Z) in fact “nudges” the
treatment), resulting in a feasible estimator

τ̂IV =
Ĉov [Yi, w(Zi)]

Ĉov [Wi, w(Zi)]
=

1
n

∑n
i=1

(
Yi − Y

) (
w(Zi)− w(Z)

)
1
n

∑n
i=1

(
Wi −W

) (
w(Zi)− w(Z)

) (9.18)

where Y = 1
n

∑n
i=1 Yi, etc. In other words, if one has access to many valid in-

struments, the analyst is free to compress them into any univariate instrument
of their choice without worrying about linearity in the relationship between W
and w(Z). The following result verifies consistency and asymptotic properties.

Theorem 9.1. Suppose (Xi, Wi, Yi, Zi) are IID draws from a distribution sat-
isfying (9.16), and let w : Z → R be such that Cov [W, w(Z)] 6= 0. Then, τ̂IV
as given in (9.18) is consistent for τ , and

√
n (τ̂IV − τ)⇒ N (0, Vw) , Vw =

Var [εi] Var [w(Zi)]

Cov [Wi, w(Zi)]
2 . (9.19)

Proof. The estimator (9.18) can be written as a Z-estimator, i.e., as the solu-
tion to n−1

∑n
i=1 ψi(θ̂) = 0 with

ψi

(
θ̂
)

=


(w(Zi)− µ̂Z) (Yi − µ̂Y − τ̂ (Wi − µ̂W ))

Yi − µ̂Y
Wi − µ̂W
w(Zi)− µ̂Z

 , (9.20)

where θ̂ = (τ̂ , µ̂W , µ̂W , µ̂Z) contains both our target parameter and the sample
means used to construct τ̂IV . Standard results for Z-estimation can then be
used to verify that54

√
n
(
θ̂ − θ

)
⇒ N (0, V ) , V = E [∇ψi(θ)]−1 Var [ψi(θ)]E [∇ψ′i(θ)]

−1
. (9.21)

54For example, this can be verified by applying Theorems 5.41 and 5.42 in Van der Vaart
[1998], and noting that the moment condition (9.20) has a unique solution with probability
tending to 1 whenever Cov [W, w(Z)] 6= 0.
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In our setting, we have E [∇ψi(θ)] = −diag (Cov [w(Zi), Wi] , 1, 1, 1), and so
(9.21) implies that (9.19) holds with

Vw =
Var [(w(Zi)− µZ) (Yi − µY − τ (Wi − µW ))]

Cov [w(Zi), Wi]
2

=
Var [(w(Zi)− E [w(Zi)]) εi]

Cov [w(Zi), Wi]
2 =

Var [w(Zi)] Var [εi]

Cov [w(Zi), Wi]
2 ,

where the last step follows from independence of Zi and εi.

Now, since essentially any transformation w : Z → R yields a valid IV esti-
mator, it’s natural to ask which such transformation maximized the precision
of the resulting estimator, i.e., minimizes the variance in (9.19). It turns out
that the optimal instrument has a simple form,

w∗(z) = E
[
Wi

∣∣Zi = z
]
, (9.22)

i.e., w∗(Zi) is the best prediction of Wi from Zi.

Theorem 9.2. In the setting of Theorem 9.1, suppose there exists a func-
tion w(z) such that Cov [W,w(Z)] 6= 0. Then, the variance Vw in (9.19) is
minimized by setting w(·) to be w∗(·), or an affine transformation thereof. Fur-
thermore, writing τ̂IV ∗ for the IV estimator with an optimal instrument,

√
n (τ̂IV ∗ − τ)⇒ N (0, Vw∗) , Vw∗ =

Var [εi]

Var
[
E
[
Wi

∣∣Zi]] . (9.23)

Proof. For any instrument choice w : Z → R, we have Cov [Wi, w(Zi)] =
Cov

[
E
[
Wi

∣∣Zi] , w(Zi)
]
. Thus, any optimal instrument must solve

w(·) ∈ argmaxw′
{

Cov
[
E
[
Wi

∣∣Zi] , w′(Zi)]2 / Var [w′(Zi)]
}
. (9.24)

By Cauchy-Schwarz, this expression is maximized whenever w(·) is taken
to be (potentially an affine transformation of) E

[
Wi

∣∣Zi]. When w(·) =
α + βE

[
Wi

∣∣Zi], we have Cov
[
E
[
Wi

∣∣Zi] , w(Zi)
]

= β Var
[
E
[
Wi

∣∣Zi]], and
(9.23) then follows from (9.19).

Cross-fitting and feasible estimation Given the optimal instrument is
the solution to a non-parametric prediction problem, w∗(z) = E

[
Wi

∣∣Zi = z
]
,

one might be tempted to apply the following two-stage strategy:

1. Fit a non-parametric first stage regression, resulting in estimate ŵ(·) of
E
[
Wi

∣∣Zi = z
]
, and then
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2. Run (9.18) with ŵ(·) as an instrument.

This approach almost works, but may suffer from striking overfitting bias when
the instrument is weak, i.e., Var

[
E
[
Wi

∣∣Zi]] is small. The main problem is
that, if ŵ(Zi) is fit on the training data, then we no longer have ŵ(Zi) ⊥⊥ εi
(because ŵ(Zi) depends on Wi, which in turn is dependent on εi). This may
seem like a subtle issue but, as pointed out by Bound, Jaeger, and Baker
[1995], can in fact be a major problem in practice. They exhibit an example
where the instrument Zi is pure noise, yet τ̂IV with instrument ŵ(Zi) converges
to an inconsistent limit, namely the simple regression coefficient OLS(Yi ∼
Wi) which—because of lack of unconfoundedness—does not match the target
parameter τ .

Thankfully, however, we can again use cross-fitting to address this issue.
We randomly split data into folds k = 1, ..., K and, for each k, fit a regression
ŵ(−k)(z) on all but the k-th fold. We then run

τ̂CFIV = Ĉov
[
Yi, ŵ

(−k(i))(Zi)
] /

Ĉov
[
Wi, ŵ

(−k(i))(Zi)
]
, (9.25)

where k(i) picks out the data fold containing the i-th observation. Now, by
cross-fitting we directly see that ŵ(−k(i))(Zi) ⊥⊥ εi, and so this approach recov-
ers a valid estimate of τ . In particular, as shown below, if the regressions
ŵ(−k(i))(z) are consistent for E

[
Wi

∣∣Zi = z
]

in mean-squared error, then the
feasible estimator (9.25) is first-order equivalent to (9.18) with an optimal in-
strument.

Theorem 9.3. Under the conditions of Theorem 9.2, let ŵ(−k)(·) be cross-fit
estimates of the optimal instrument with

1

n

∑
k(i)=k

(
ŵ(−k)(Zi)− w∗(Zi)

)2 →p 0. (9.26)

Then, τ̂CFIV also satisfies the central limit theorem (9.25).

Proof. Starting from the explicit form (9.18), we can write

τ̂CFIV =
Ĉov

[
Yi, ŵ

(−k(i))(Zi)
]

Ĉov [Wi, ŵ(−k(i))(Zi)]
=

1
n

∑n
i=1 (Yi − µ̂Y ) ŵ(−k(i))(Zi)

1
n

∑n
i=1 (Wi − µ̂W ) ŵ(−k(i))(Zi)

.

Furthermore, by (9.11), we can continue

. . . =
1
n

∑n
i=1 ((Wi − µ̂W ) τ + (εi − µ̂ε)) ŵ(−k(i))(Zi)

1
n

∑n
i=1 (Wi − µ̂W ) ŵ(−k(i))(Zi)

= τ +
1
n

∑n
i=1 (εi − µ̂ε) ŵ(−k(i))(Zi)

1
n

∑n
i=1 (Wi − µ̂W ) ŵ(−k(i))(Zi)

,
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where µ̂Y , µ̂W and µ̂ε are sample averages of Yi, Wi and εi respectively. The
above identity holds algebraically for any estimator ŵ(−k)(·), including the per-
fect estimator ŵ(−k)(·) = w∗(·), and so we only need to show that errors from
an estimator ŵ(−k)(·) that is consistent estimator in the sense of (9.26) have a
negligible effect on the final expression above. To this end, it suffices to verify
that

1

n

n∑
i=1

(εi − µ̂ε)
(
ŵ(−k(i))(Zi)− w∗(Zi)

)
= oP

(
1√
n

)
1

n

n∑
i=1

(Wi − µ̂W )
(
ŵ(−k(i))(Zi)− w∗(Zi)

)
= oP

(
1√
n

)
,

(9.27)

which follows from cross-fitting and (9.26) by the same argument as used in
(3.14) in the proof of Theorem 3.2.

Non-parametric instrumental variables regression At the beginning of
Chapter 9.2 we noted that instrumental variables methods cannot be justi-
fied via do-calculus alone, and so further structural assumptions are required.
Here, we have mostly focused on methods that are valid under the linearity
assumption (9.11); however, we emphasize that this is not the weakest assump-
tion under which instrumental variable methods can be justified. One notable
generalization is the non-parametric instrumental variables problem,

Yi = α + g(Wi) + εi, Zi ⊥⊥ εi, Yi, Wi ∈ R, Zi ∈ Z, (9.28)

where g(·) is some generic smooth function we want to estimate.55 The model
(9.28) is still stronger than the generic SEM (9.1) because it requires the effect
of Wi on Yi to be additive; however, unlike (9.16), it now allows this additive
effect to be modified by a non-linearity g(·).

Because Zi ⊥⊥ εi and assuming without loss of generality that E [εi] = 0, we
can directly verify that

E
[
Yi
∣∣Zi = z

]
= E

[
α + g(Wi) + εi

∣∣Zi = z
]

= α + E
[
g(Wi)

∣∣Zi = z
]

= α +

∫
R
g(w)f

(
w
∣∣ z) dw, (9.29)

where f(w
∣∣ z) denotes the conditional density of Wi given Zi = z. This re-

lationship suggests a two-stage scheme for learning g(·), whereby we (1) fit a

55As before, because Wi is not independent of εi, we cannot learn g(·) by simply doing a
(non-parametric) regression of Yi on Wi, i.e., g(w) 6= E

[
Yi
∣∣Wi = w

]
.
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non-parametric model f̂(w
∣∣ z) for the conditional density f(w

∣∣ z), preferably
using cross-fitting, and (2) estimate g(w) via a empirical minimization over a
suitably chosen function class G,

ĝ(·) = argming∈G, α

{
1

n

n∑
i=1

(
Yi −

∫
R
g(w)f̂ (−k(i))

(
w
∣∣Zi) dw − α)2

}
. (9.30)

In order to solve the inverse problem (9.30) in practice, one approach is to
approximate g(w) in terms of a basis expansion, gJ(w) =

∑J
j=1 βjψj(w), where

the ψj(·) are a set of pre-determined basis functions and gJ(w) provides an
increasingly good approximation to g(w) as J gets large. Then, (9.30) becomes

β̂ = argminα, β

 1

n

n∑
i=1

(
Yi −

J∑
j=1

m̂
(−k(i))
j (Zi) βj − α

)2
 , where

m̂
(−k(i))
j (Zi) =

∫
R
ψj(w) f̂ (−k(i))

(
w
∣∣Zi) dw.

(9.31)

Conditions under which this type of approach yields a consistent estimate of
g(·) are discussed in Newey and Powell [2003]. In general, however, one should
note that solving the integral equation (9.29) is a difficult inverse problem, and
so getting (9.31) to work in practice requires careful regularization—and, even
so, one should expect rates of convergence to be slow.

9.3 Bibliographic notes

The use of structural models for reasoning about observed data has a long
tradition; early examples include the work of Wright [1934] on path models
motivated by genetics and that of Haavelmo [1943] for reasoning about simul-
taneous equation models (e.g., for joint modeling of supply and demand).

Our presentation of non-parametric SEMs in Chapter 9.1, including the
examples of the front- and back-door identification formulas, is adapted from
Pearl [1995]. The do-calculus was proposed by Pearl [1995]; a recent overview
of the literature on non-parametric SEM is given in Pearl [2009]. One should
note that SEMs are not the only way of representing causal effects in complex
sampling designs using DAGs; other approaches have also been developed by
Robins [1986] and Spirtes, Glymour, and Scheines [1993]. In particular, the
approach of Robins [1986] builds on the potential outcomes framework; see
Robins and Richardson [2010] for further discussion. For a broader discussion
of the role of non-parametric SEMs in econometrics see Imbens [2019], Pearl
and Mackenzie [2018], and references therein.
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Instrumental variable methods are widely used in modern applied econo-
metrics. The literature on efficient estimation with instrumental variables goes
back to Amemiya [1974], Chamberlain [1987], and others. Newey [1990] showed
that the optimal instruments in model (9.16) can be understood as the solution
to a prediction problem, thus opening the door to deriving optimal instruments
via non-parametric prediction. The role of sample splitting in mitigating over-
fitting bias with instrumental variable methods was recognized by Angrist and
Krueger [1995], who refer to this technique as split-sample instrumental vari-
able estimation.

One question we’ve ignored today is the role of covariates for instrumen-
tal variables regression. Following our approach to unconfoundedness, one can
extend (9.16) such that εi ⊥⊥ Zi

∣∣Xi, i.e., the instrument is only exogenous
after conditioning on Xi, and we have a heterogeneous treatment effect func-
tion identified as τ(x) = Cov

[
Yi, w(Zi)

∣∣Xi = x
]
/ Cov

[
Wi, w(Zi)

∣∣Xi = x
]
;

see Abadie [2003] and Aronow and Carnegie [2013] for a further discussion.
Given this setting, one can then re-visit many of the questions we considered
under unconfoundedness. Chernozhukov et al. [2022a] show how to build a
doubly robust estimator of the average effect τ = E [τ(X)] while Athey, Tib-
shirani, and Wager [2019] propose a random forest estimator of τ(·); see also
Exercise 11 in Chapter 16.
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Chapter 10
Local Average Treatment Effects

Instrumental variable regression is commonly used to estimate the effect of
an endogenous treatment. In the previous chapter we saw how, given the
structural equation model depicted in Figure 9.3 and a linear specification
(9.11) governing the effect of the treatment Wi and the outcome Yi, we can
use an instrument Zi to identify the treatment effect parameter τ as a ratio of
covariances,

τ = Cov [Yi, Zi]
/

Cov [Wi, Zi], (10.1)

and consistently estimate τ via

τ̂IV = Ĉov [Yi, Zi]
/

Ĉov [Wi, Zi]. (10.2)

In general, however, researchers in causal inference are often skeptical of inter-
preting target estimands that are only defined and understood as parameters
in a linear model; and so, in this chapter, we will revisit our analysis of the in-
strumental variable estimator τ̂IV without assuming linearity—or, equivalently,
under an assumption that (9.11) may be misspecified.

Without linearity, the estimator τ̂IV still converges to a large-sample limit

τ̂IV → τLATE := Cov [Yi, Zi]
/

Cov [Wi, Zi] (10.3)

whenever Cov [Wi, Zi] 6= 0; however, it is no longer immediately clear how to
interpret this limit. In this chapter, we will study what this limit quantity
is, and when it can be understood as a causal quantity. We will survey a
number of economic models where endogenous selection into treatment may
be a concern and find that—under fairly weak assumptions—this limit is a
weighted treatment effect with weights depending on (unobserved) attributes
that control how responsive each unit is to the nudge given by the instrument.
Following Imbens and Angrist [1994], when these conditions hold, we refer to
this limit as the local average treatment effect (LATE), i.e., the treatment
effect “local” to those responsive to the instrument.
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10.1 Non-compliance in randomized trials

The simplest setting in which we can discuss non-parametric identification
using instrumental variables is when estimating the effect of a binary treatment
under non-compliance. Suppose, for example, that we’ve set up a randomized
study to examine the effect of taking a drug to lower cholesterol. But, although
we randomly assigned treatment, some people don’t obey the randomization:
Some subjects given the drugs may fail to take them, while others who were
assigned control may procure cholesterol lowering drugs on their own. In this
case, we have56

• An outcome Yi ∈ R, with the usual interpretation;

• The treatment Wi ∈ {0, 1} that was actually received (i.e., did the sub-
ject take the drug), which is not random because of non-compliance; and

• The assigned treatment Zi ∈ {0, 1} which is random.

A popular way to analyze this type of data is using instrumental variables,
where we interpret treatment assignment Zi as an exogenous “nudge” on the
treatment Wi that was actually received.57

If one believes in the partially linear structural model (9.11) considered
in the previous chapter, then one can consistently estimate τ via (10.3) pro-
vided that assigned treatment in fact nudges the received treatment, i.e.,
Cov [Wi, Zi] 6= 0. In practice, however, one may doubt the validity the con-
stant treatment effect assumption (9.11), and suspect that people who comply
with the treatment respond differently to the treatment than those who don’t
comply. For example, there may exists a class of patients who chose to com-
ply because they knew they’d benefit a lot from the treatment; or conversely
other patients may have chosen not to comply because they knew they had a
disproportionate risk of being hurt by it.

Potential outcomes under non-compliance A more careful approach
starts by writing down potential outcomes. First, because Wi is non-random

56Note that the available data is richer if the trial design involves assigning placebo drugs
to the controls, as in this case compliance can be measured for both the treated units (did
they take the drug?) and controls (did they take the placebo?) [Efron and Feldman, 1991].

57Similar statistical patters can also arise outside of randomized trials. For example, in
order to study the effect of military service on long-term income, Angrist [1990] uses the
draft lottery as an instrument for the treatment of interest, i.e., military service. Both
the instrument and treatment are binary here, and so methods developed to understand
non-compliance in randomized trials can be directly applied to this setting.
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and may respond to Zi, we need to have potential outcomes for the treatment
variable in terms of the instrument, i.e., there are {Wi(0), Wi(1)} such that
Wi = Wi(Zi). Second, of course, we need to define potential outcomes for
the outcome, which may in principle respond to both Wi and Zi: we have
{Yi(w, z)}w,z∈{0, 1} such that Yi = Yi(Wi, Zi).

Given this notation, we now revisit our assumptions for what makes a valid
instrument:

• Exclusion restriction. Treatment assignment only affects outcomes
via receipt of treatment, i.e., Yi(w, z) = Yi(w) for all w and z.

• Exogeneity. The treatment assignment is randomized, meaning that
{Yi(0), Yi(1), Wi(0), Wi(1)} ⊥⊥ Zi.

• Relevance. The treatment assignment affects receipt of treatment,
meaning that E [Wi(1)−Wi(0)] 6= 0.

Finally, we make one last assumption about how people respond to treatment.
Defining each subject’s compliance type as Ci = {Wi(0), Wi(1)}, we note
that there are only 4 possible compliance types here:

Wi(1) = 0 Wi(1) = 1
Wi(0) = 0 never taker complier
Wi(0) = 1 defier always taker

Our last assumption is that there are no defiers, i.e., P [Ci = {1, 0}] = 0; this
assumption is often also called monotonicity. Given these 4 assumptions, we
obtain the following simple characterization of the IV estimand (10.3).

Theorem 10.1. Consider a sampling distribution with a binary treatment Wi

and a binary instrument Zi, and satisfying the 4 assumptions given above (ex-
ogeneity, relevance, monotonicity, and the exclusion restriction). Then,

τLATE = E
[
Yi(1)− Yi(0)

∣∣Ci = complier
]
. (10.4)

Proof. With a binary treatment and instrument, the IV estimand (10.3) can
be written as

τLATE =
E
[
Yi
∣∣Zi = 1

]
− E

[
Yi
∣∣Zi = 0

]
E
[
Wi

∣∣Zi = 1
]
− E

[
Wi

∣∣Zi = 0
] ,

130



and this ratio is well defined thanks to the relevance assumption. Furthermore,

E
[
Yi
∣∣Zi = 1

]
− E

[
Yi
∣∣Zi = 0

]
= E

[
Yi(Wi(1))

∣∣Zi = 1
]
− E

[
Yi(Wi(0))

∣∣Zi = 0
]

(exclusion)

= E [Yi(Wi(1))− Yi(Wi(0))] (exogeneity)

= E [1 ({Ci = complier}) (Yi(1)− Yi(0))] , (monotonicity)

and similarly that

E
[
Wi

∣∣Zi = 1
]
− E

[
Wi

∣∣Zi = 0
]

= P [{Ci = complier}] .

The result (10.4) then follows by Bayes’ rule.

Although this is a very simple result, it already gives us some encouragement
that IV methods can be interpreted in a non-parametric setting: When the
constant treatment effect model (9.11) doesn’t hold, the average treatment
effect τATE = E [Yi(1)− Yi(0)] is clearly not identified without more data,
because we don’t have any observations on treated never takers, etc. However,
under reasonable assumptions, IV methods let us estimate the most meaningful
quantity we can identify here, namely the average treatment effect among those
who comply with the treatment as assigned by the experimenter.

Example 1 (Continued). In the example of Finkelstein et al. [2012] on the Ore-
gon Medicaid lottery, introduced in Chapter 1, roughly 35,000 of 90,000 lottery
participants were allowed to apply for Medicaid. However, of the 35,000 lottery
winners, only about 30% in fact enrolled for Medicaid: Some didn’t complete
the application, and some hadn’t met the requirements for joining the lottery
to begin with (e.g., their income was too high). The average treatment effect
measured via the difference-in-means estimator thus does not directly quantify
the benefit of Medicaid enrollment here. But, because there are plausibly no
defiers here, we can divide the raw difference-in-means by 0.3 to get a local
average treatment effect, i.e., an estimate of the average benefit for those who
would in fact enroll for Medicaid if they win the lottery.

Multiple instruments In some applications, we may have access to data
from multiple randomized trials that can be used to study a treatment effect
via a non-compliance analysis. Consider, for example, a marketing applica-
tion where a company wants to study the effect of subscription to a loyalty
program (Wi) on long-term customer revenue (Yi), and has access to multi-
ple randomized trials whose treatments (Zi) effectively nudge customers to
join the loyalty program and can thus be used as instruments. For exam-
ple, one randomized trial may offer discounts for joining the loyalty program
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(Zi = 1 ({customer received a discount})) while another may show advertise-
ments (Zi = 1 ({customer was shown an ad for the program})).

If we just focus on one of the instruments, then the methods developed
above can be applied directly. However, one may also be tempted to somehow
pool the instruments. In the previous chapter we saw that, under the linear
treatment effect model, multiple instruments could be combined into a single
optimal instrument, and the optimal instrument corresponds to the summary
of all the instruments that best predicts the treatment (Theorem 9.2).

Without the linear treatment effect model, however, we caution that no such
result is available. Different instruments may induce difference compliance
patterns, and so the LATEs identified different instruments may not be the
same; and a pooled instrument produced using the construction in Theorem
9.2 may induce yet another compliance pattern. For example, in our marketing
example, the ATE for customers who respond to a discount may be different
from the ATE for customers who respond to an advertisement.

As such, when working without the linear treatment assumption (9.11), if
there are multiple instruments to choose from a researcher may prefer to simply
use the instrument whose LATE most closely matches a policy-relevant effect of
interest. One could also run separate IV analyses using different instruments,
and use discrepancies between the resulting estimates to argue for heterogeneity
in treatment effects across different compliance groups.

10.2 Latent choice models

Instrumental variables regression is also used in many applications that go
beyond the binary-treatment-binary-instrument setting considered above. In
economics, there has been longstanding interest in models where agents make
choices (e.g., take a job, go to college, start a company) in a way that is
determined by latent and often unobserved attributes (e.g., skills, motivation,
risk tolerance), and these latent attributes also influence economic outcome
variables of interest (e.g., lifetime income) [Heckman, 1979, Roy, 1951].

Without access to further data or assumptions, it is generally impossible to
measure the causal effect of such choices because of the inherent endogeneity
(i.e., the dependence of treatment selection on latent attributes). Instrumental
variable methods, however, can provide a path forward in settings where we
have access to data on exogenous shocks that can be argued to nudge selection
into treatment in a quasi-random manner. We will here study the behavior of
IV regression in a number of such choice models, again without making the
constant treatment effect assumption (9.11) and instead allowing treatment
effects to depend on unobserved latent attributes.
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Supply and demand In many settings, it is of considerable interest to know
the price elasticity of demand, i.e., how demand would respond to price changes.
In a typical marketplace, prices are not exogenous—rather, they arise from an
interplay of supply and demand—and so estimating the elasticity requires an
instrument. This is an example of a latent choice model, as both supply and
demand are determined by individual choices shaped by market prices together
with unobserved factors (e.g., willingness to pay or production costs).

One can formalize the relationship of supply and demand via potential
outcomes as follows. For each marketplace i = 1, ..., n, there is a supply
curve Si(p, z) and a demand curve Qi(p, z), corresponding to the supply (and
respectively demand) that would arise given price p ∈ R and some instrument
z ∈ {0, 1} that may affect the marketplace (the instrument could, e.g., capture
the presence of supply chain events that make production harder and thus
reduce supply). For simplicity, we may take Si(·, z) to be continuous and
increasing and Qi(·, z) to be continuous and decreasing.

Example 9 (Continued). In the setting of Angrist, Graddy, and Imbens [2000]
one may argue that, on closer inspection, the DAG given in Figure 9.3 does not
present a complete structural explanation for the interplay of supply, demand,
prices and weather; and that the above market equilibrium model (with weather
as the instrument) provides a better fit. The discussion below will show how we
can still make sense of the basic IV estimator τ̂IV while framing causal effects
in terms of this equilibrium model.

Given this setting, suppose that first the instrument Zi gets realized; then
prices Pi arise by matching supply and demand, such that Pi is the unique
solution to the market equilibrium condition58 Si(Pi, Zi) = Qi(Pi, Zi). The
researcher observes the instrument Zi, the market clearing price Pi (“the treat-
ment”) and the realized demand Qi = Qi(Pi, Zi) (“the outcome”). We say
that Zi is a valid instrument for measuring the effect of prices on demand if
the following conditions hold:

• Exclusion restriction. The instrument only affects demand via supply,
and cannot have a direct effect on it: Qi(p, z) = Qi(p) for all p and z.

• Exogeneity. The instrument is as good as random, {Qi(p), Si(p, z)} ⊥⊥
Zi.

• Relevance. The instrument affects prices, Cov [Pi, Zi] 6= 0.

58This type of model is also referred to as a simultaneous equation model, as Pi is deter-
mined by simultaneously considering the supply and demand “equations” Si = Si(Pi, Zi)
and Qi = Qi(Pi, Zi).
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• Monotonicity. The instrument never increases supply, i.e., Si(Pi, 1) ≤
Si(Pi, 0) almost surely.

Given this setting, we seek to estimate demand elasticity via (10.3).59

Now, although this may seem like a complicated setting, it turns out that
the IV estimand where we use Zi as an instrument to measure the effect of Pi
on Qi is well behaved—and admits a characterization as a weighted average of
the derivative of Qi(p).

Theorem 10.2. In the above supply-demand model, suppose furthermore that
Qi(p) is differentiable and write Q′i(p) for its derivative.60 Then,

τLATE =

∫
E
[
Q′i(p)

∣∣Pi(0) ≤ p ≤ Pi(1)
]
P [Pi(0) ≤ p ≤ Pi(1)] dp∫

P [Pi(0) ≤ p ≤ Pi(1)] dp
, (10.5)

Proof. Because Zi is binary, we can write

τLATE =
E
[
Qi

∣∣Zi = 1
]
− E

[
Qi

∣∣Zi = 0
]

E
[
Pi
∣∣Zi = 1

]
− E

[
Pi
∣∣Zi = 0

] .
Now, under the assumptions made here, i.e., that the instrument suppresses
supply and that the supply and demand curves are monotone increasing and
decreasing respectively, the instrument must have a monotone increasing effect
on prices: Pi(1) ≥ Pi(0). Then,

E
[
Qi

∣∣Zi = 1
]
− E

[
Qi

∣∣Zi = 0
]

= E
[
Qi(Pi(1))

∣∣Zi = 1
]
− E

[
Qi(Pi(0))

∣∣Zi = 0
]

(exclusion)

= E [Qi(Pi(1))−Qi(Pi(0))] (exogen.)

= E

[∫ Pi(1)

Pi(0)

Q′i(p) dp

]
(monot.)

=

∫
E
[
Q′i(p)

∣∣Pi(0) ≤ p ≤ Pi(1)
]
P [Pi(0) ≤ p ≤ Pi(1)] dp, (Fubini)

and the denominator in (10.5) can be characterized via similar means to obtain
(10.5).

59To be precise, when studying demand elasticity we’d actually run this analysis with
outcome log(Qi) and treatment log(Pi). Here we’ll ignore the logs for simplicity; introducing
logs doesn’t add any conceptual difficulties.

60The differentiability assumption on Qi(·) is only made for simplicity and is not actually
needed here: We’ve assumed that Qi(·) is monotone increasing so that the distributional
derivative must exist, and all arguments in the proof can be generalized to work with a
distributional derivative.

134



The above result is not quite as interpretable as the one obtained in Theo-
rem 10.1, where the LATE was founds to exactly match the average treatment
effect for the compliers. However, as seen in the remarks below, the character-
ization (10.5) can still be helpful in understanding the practical behavior of IV
methods in applications involving supply-demand equilibrium formation.

Remark 10.1. Under the setting of Theorem 10.2, if individual demand func-
tions are linear in prices, Q′i(p) = αi + βip, then

τLATE = E [βi (Pi(1)− Pi(0))] /E [Pi(1)− Pi(0)] , (10.6)

i.e., the LATE matches the average price parameter weighted by how much
the price responds to the instrument. Furthermore, if we have approximate
linearity then Theorem 10.2 implies that (10.6) also still holds approximately—
and can be used to quantitatively assess the effect of deviations from linearity.

Remark 10.2. Under the setting of Theorem 10.2, if individual demand
functions Qi(p) are smooth and if the instrument only has a small ef-
fect on prices, i.e., Pi(0), Pi(1) ≈ p0 for some stable price p0, then
τLATE ≈ E [Q′i(p0)(Pi(1)− Pi(0))] /E [Pi(1)− Pi(0)].

Threshold crossing models Another widely used class of choice models
arises when agents take a certain action Wi (e.g., attend college) if their (un-
observed) utility Ui from doing so exceeds the cost of taking the action. In
settings such as these, if we have an exogenous instrument Zi that can modify
the cost of taking the action (e.g., in the case of college attendance, a randomly
assigned tuition subsidy), then we may again seek to use this instrument to
estimate the effect of Wi on a downstream outcome Yi (e.g., lifetime income).

The standard way to model this setting is via a threshold crossing model:
We assume that each subject has a latent and endogenous variable Ui such that

Wi = 1 ({Ui ≥ c(Zi)}) , (10.7)

where c(z) gives the cost of treatment as a function of the instrument z, which
we will here allow to be continuous valued. This boundary crossing structure
yields a valid instrument under analogues to our usual assumptions:

• Exclusion restriction. There are potential outcomes {Yi(0), Yi(1)}
such that Yi = Yi(Wi)

• Exogeneity. The treatment assignment is randomized, meaning that
{Yi(0), Yi(1), Ui} ⊥⊥ Zi.
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• Relevance. The threshold function c(Zi) has non-trivial variation, i.e.,
P
[
Ui ≥ c(Zi)

∣∣Zi = z
]

is not constant in z.

• Monotonicity. The threshold function c(z) is non-increasing in z.

Finally, define the marginal treatment effect

τ(u) = E
[
Yi(1)− Yi(0)

∣∣Ui = u
]
. (10.8)

Our goal is to show that IV methods recover a weighted average of the marginal
treatment effect τ(u). Below, for convenience, we assume that the instrument
is Gaussian, i.e., Zi ∼ N (0, 1), as this allows us to apply Stein’s lemma; more
general results without assuming such Gaussianity are given in Heckman and
Vytlacil [2005].

Theorem 10.3. Given the threshold crossing model discussed above, suppose
that Ui has a distribution with density f(u) and CDF 1 − G(u), that τ(u) is
uniformly bounded, and that Zi has a Gaussian distribution, Zi ∼ N (0, 1).
Suppose furthermore that the threshold function c(·) is cadlag, i.e., c(z) =
lima↓z c(a) for all z, and write c−(z) = lima↑z c(a). Then, there exists a non-
negative, Lebesgue-measurable function c′(z) such that c(z) = c0 +

∫ z
−∞ c

′(a) da,
and

τLATE =

∑
z∈S

(∫ c−(z)

c(z)
τ(u)f(u) du

)
ϕ(z)−

∫
R\S τ (c (z)) f(c(z))c′ (z)ϕ (z) dz∑

z∈S (G(c(z))−G(c−(z)))ϕ(z)−
∫
R\S f(c(z))c′ (z)ϕ (z) dz

,

where S ⊂ R is the set of discontinuity points of c(·) and ϕ(·) is the standard
Gaussian density.

Proof. The fact that c(z) has a distributional derivative follows immediately
from the fact that it is monotone (and thus has bounded variation). Now, in or-
der to establish the desired result, the key task is in characterizing Cov [Yi, Zi];
an expression for the denominator of (10.3) can then be obtained via the same
argument. First, note that

Cov [Yi, Zi] = Cov [Yi(0) + (Yi(1)− Yi(0))Wi, Zi]

= Cov [(Yi(1)− Yi(0))Wi, Zi]

= Cov [(Yi(1)− Yi(0))1 ({Ui ≥ c(Zi)}) , Zi]
= Cov [τ(Ui)1 ({Ui ≥ c(Zi)}) , Zi] ,

where the first equality follows from the exclusion restriction, while the second
and fourth follow from exogeneity.
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Now, write H(z) = E [τ(Ui)1 ({Ui ≥ c(z)})]. Because Zi is standard Gaus-
sian, Lemma 1 of Stein [1981] implies that

Cov [H(Zi), Zi] = E [H ′(Zi)] , (10.9)

where H ′(Zi) denotes the distributional derivative of H(·). Furthermore, by
the chain rule [Ambrosio and Dal Maso, 1990, Corollary 3.1],

H ′(z) =

{(∫ c−(z)

c(z)
τ(u)f(u) du

)
δz for z ∈ S,

−τ (c (z)) f(c(z))c′ (z) else,
(10.10)

where δz is the Dirac delta-function at z. The desired result follows.

Remark 10.3. Under the setting of Theorem 10.3, suppose that the threshold
function c(z) is constant with a single jump, i.e., c(z) = c0 − δ11 ({z ≥ z1}).
Then compliance types collapse into three principal strata: Never-takers with
Ui < c0− δ1, compliers with c0− δ1 ≤ Ui < c0, and always takers with Ui ≥ c0.
Furthermore, just as before, our estimand corresponds to the average treatment
effect over the compliers as in Theorem 10.1,

τLATE = E
[
τ(Ui)

∣∣ c0 − δ1 ≤ Ui < c0

]
(10.11)

Remark 10.4. Building on the previous example, now suppose there are K
jumps, with cutoff function given by c(z) = c0 −

∑K
k=1 δk1 ({z ≥ zk}). Then,

τLATE =
K∑
k=1

E
[
τ(Ui)

∣∣ c(zk) ≤ Ui < c−(zk)
]
γk

/ K∑
k=1

γk,

γk = (G(c(zk))−G(c−(zk)))ϕ(zk).

(10.12)

In other words, we recover a convex combination of average treatment effects
over compliance strata defined by the jumps in c(·). These weights depend on
the size of the stratum and the density function of the instrument at zk.

Remark 10.5. Under the setting of Theorem 10.3, suppose c(z) has no jumps.
Then, the LATE corresponds to a weighted average of τ(c(Zi)),

τLATE =

∫
R
τ (c (z)) f(c(z))c′ (z)ϕ (z) dz

/ ∫
R
f(c(z))c′ (z)ϕ (z) dz. (10.13)

The weights can be interpreted via f(c(z))c′ (z) = d/dz P [Ui ≥ c(z)], i.e., they
are proportional to the local strength of the instrument.
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Estimating the marginal treatment effect Throughout this chapter,
we’ve taken it as a given that we’re going to target the estimand (10.3), and
then have sought to interpret it in different settings. However, when we get to
work with a continuous instrument, it’s possible to target a wider variety of
estimands. A first key result is that, in the threshold-crossing model considered
above, the marginal treatment effect (10.8) is identified at continuity points of
c(z) via a simple “local IV” construction.

Theorem 10.4. Under the setting of Theorem 10.3, suppose that c(z) is con-
tinuously differentiable at z with c′(z) < 0 and Ui has a density satisfying
f(c(z)) > 0. Then, the marginal treatment effec τ(u) from (10.8) is identified
as

τ(c(z)) =
d
dz
E
[
Yi
∣∣Zi = z

]
d
dz
P
[
Wi = 1

∣∣Zi = z
] . (10.14)

Proof. Under our threshold-crossing model,

E
[
Yi
∣∣Zi = z

]
= E

[
Yi(0) + 1 ({Ui ≥ c(Zi)}) (Yi(1)− Yi(0))

∣∣Zi = z
]

= E [Yi(0) + 1 ({Ui ≥ c(z)}) (Yi(1)− Yi(0))]

= E [Yi(0)] +

∫ 1

c(z)

τ(u)f(u)du,

where the first equality is due to (10.7) and the exclusion restriction, the second
is due to exogeneity, and the third is an application of Fubini’s theorem. Next,
given that c(z) is continuously differentiable at z, we can use the chain rule to
check that

d

dz
E
[
Yi
∣∣Zi = z

]
= −τ(c(z))f(c(z))c′(z). (10.15)

Finally, applying the same calculation to the denominator yields (10.14).

Once we have access to the marginal treatment effect, we can use it to
build estimators for weighted averages of E [γ(u)τ(u)], provided the weights
γ(u) only take positive values at points u = c(z) at which c(z) is continuous.
Heckman and Vytlacil [2005] consider a variety of estimands of this type.

Example 10. Carneiro, Heckman, and Vytlacil [2011] use the local IV method
to estimate returns to college attendance. The authors use data from the 1979
cohort from the National Longitudinal Survey of Youth (consisting of people
born between 1957 and 1964), set their outcome variable Yi to be log-income
in 1991, and set their treatment variable Wi to be ever-enrollment in college
by 1991. They identify marginal treatment effects via instruments Zi that
shift the desirability of attending college, including the presence of a nearby
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college, tuition at nearby colleges, and local employment conditions at the time
when people turn 17. Their main finding is that, using our notation, τ(u) is
increasing in u, and that people who are more likely to attend college in the face
of adverse nudges (i.e., abstractly, with a higher willingness to pay for college)
in fact benefit more from college. Their results thus suggest that peoples’
choices under the model (10.7) can at least directionally be rationalized via
private forecasts of future income benefits from college attendance.

10.3 Bibliographic notes

The idea of interpreting the results of instrumental variables analyses in terms
of the local average treatment effect goes back to Imbens and Angrist [1994].
Our presentation of the analysis of clinical trials under non-compliance follows
Angrist, Imbens, and Rubin [1996]. We refer to Imbens [2014] for a review.

Latent choice models, where people make choices if their (private) value
from making that choice exceeds the cost, have a long tradition in economics.
In an early example, Roy [1951] considered a model where workers pick a profes-
sion by considering their skills at different jobs and then choose the profession
that enables them to maximize their wages—and used it to argue that, if worker
skills are correlated across professions but productivity is more responsive to
skill in some professions than in others, then we should expect higher average
wages in professions with higher returns to skills. It has long been understood
that such models cannot be fit via standard linear regression; however, in the
early literature, such models were often approached via ad-hoc econometric
strategies rather than IV methods. For example, Heckman [1979] considered a
parametric latent choice model, and achieved identification via joint normality
of latent variable Ui and potential outcomes (as opposed to using an auxiliary
source of exogenous variation).

More recently, Heckman and Vytlacil [2005] have advocated for latent choice
models as a natural framework for understanding instrumental variables meth-
ods, and have studied methods that target a wide variety estimands beyond
the LATE that may be more helpful in setting policy. The identification result
(10.14) for the marginal treatment effect via the local IV construction is due
to Heckman and Vytlacil [1999]. Kennedy, Lorch, and Small [2019] studies
semiparametrically efficient estimation of functions of the marginal treatment
effect. The goal of estimating average treatment effects over subpopulations
defined by conditioning on unobservables also arises in the literature on prin-
cipal stratification developed in biostatistics [Frangakis and Rubin, 2002]. Our
presentation of the local average treatment effect under supply-demand equi-
librium is adapted from Angrist, Graddy, and Imbens [2000].

139



Chapter 11
Spillovers and Interference

Throughout our discussions so far, we have relied on the SUTVA assumption
whereby the treatment given to one person only affects the targeted person and
not others. This assumption is reasonable in a number of setting, including
when, in medicine, we want to assess the benefits of a cancer treatment or
when, in marketing, we want to assess the effectiveness of a customer-retention
program. In other settings, however, this assumption is obviously fraught, and
cross-unit treatment spillovers are a first-order concern.

Example 11. Cai, Janvry, and Sadoulet [2015] ran a randomized experiment in
rural China to understand whether take-up of government-subsidized weather
insurance could be promoted via information sessions that give a detailed pre-
sentation on how the insurance product works. The authors were interested in
both direct effects of the intervention on people who attend the information
sessions, and in spillovers onto the friends of those who attended. Asking about
spillovers reflects an underlying belief that information given to some people
may affect insurance take-up by others (namely their friends).

Example 12. Blattman et al. [2021] report results on a randomized evalu-
ation of crime-reduction measures in Bogotá, Colombia. The city identified
1,919 streets as crime hot spots, and randomized them to receive either in-
creased police patrolling, increased municipal services, both interventions or
neither; the authors were interested in measuring any effect of these measures
on both violent crime or property crime. A concern in the analysis was that,
instead of suppressing crime, some localized interventions may only displace it
to neighboring streets; and the authors develop techniques for evaluating such
spillovers.

Example 13. Ride-sharing platforms seek to connect potential riders with
freelance drivers. Many existing platforms propose prices up front, i.e., they
first advertise trips to riders at a given price and then seek to connect with a
driver once a trip request is made. It is natural to run experiments to fine-tune
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these prices for healthy market behavior, but properly accounting for spillovers
is crucial in doing so. For example, if one were to randomize access to driver
incentives, it is expected that drivers with access to such incentives would earn
more per hour than those who don’t. However, as reported by Hall, Horton,
and Knoepfle [2023], giving such incentives to everyone may not increase hourly
earnings for drivers—because the incentives may draw more drivers to work for
the platform, thus reducing utilization levels of existing drivers (i.e., existing
drivers might earn more per hour while actively transporting a driver, but have
this benefit be canceled out by an increased amount of time spent idle). In
other words, spillovers arise via market re-equilibriation.

Example 14. Infectious-disease vaccines provide two types of protection
against disease spread: Vaccinated people may be less likely to get infected than
unvaccinated people given comparable circumstances, and vaccinating a large
enough fraction of the population may create a herd-immunity phenomenon
that unvaccinated people also benefit from. The emergence of herd immunity
is a type of spillover that is relevant to assessing public-health benefits of vac-
cination; Ogburn and VanderWeele [2017] discuss a modeling framework for
estimating these effects.

The spillover mechanisms in all examples above are different. The end re-
sult, however, is the same: SUTVA fails, and new ideas are needed to assess the
effects of an intervention. This chapter will introduce methods for modeling
and testing for the presence of spillovers and, more broadly, cross-unit inter-
ference (i.e., treatment given to one person affects others); in the next chapter,
we will then turn to questions of estimation and building confidence intervals.
For simplicity, we will focus on randomized controlled trial (RCT) settings in
this chapter and the next.

11.1 Exposure mappings

As in Chapter 1, we assume that we have data on i = 1, . . . , n people, each
of whom receives a randomized binary treatment Wi ∈ {0, 1} and then expe-
riences an outcome Yi ∈ R. Under interference, however, it no longer makes
sense to only define two potential outcomes per unit; rather, each unit can
now have up to 2n potential outcomes {Yi(w) : w ∈ {0, 1}n}, corresponding
to each possible treatment assignment for the whole study. The associated
potential-outcome consistency assumption is61

Yi = Yi (W) , W = (Wi)
n
i=1 . (11.1)

61In this chapter and the next, we will render vectors of observables across units in bold.
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While this notation is similar to that used in Chapter 1, the problem is now
substantively much harder and we have an apparent curse of dimensionality
to deal with, whereby the number of potential outcomes grows exponentially
faster than the study size.

Any approach to causal inference under interference needs to put some
structure on the potential outcomes in order to enable accurate treatment
effect estimation. Here, we will do so by assuming an exposure mapping: Each
unit has an exposure function Hi : {0, 1}n → Hi with the property that Yi
only depends on the full potential outcome vector W through Hi(W).

Assumption 11.1. An exposure mapping is a set of unit-specific functions
Hi : {0, 1}n → Hi. The assumption that this this exposure mapping is well
specified is a claim that, for all pairs w, w′ ∈ {0, 1}n, we have

Yi(w) = Yi(w
′) whenever Hi(w) = Hi(w

′). (11.2)

When there is no risk of confusion, we use overloaded notation such as Yi =
Yi(Hi(W)) or Yi = Yi(Hi).

The simplest type of exposure mapping to work with statistically is the
cluster-interference model. Under cluster interference, experimental units
are divided into non-overlapping clusters, such that spillovers can be essentially
arbitrary within cluster but there are no spillovers across clusters. Formally, in
the context of Assumption 11.1, cluster interference posits Hi(w) = (w)j∈Ci ,
where Ci is the set of units in the same cluster as the i-th unit. The reason
cluster interference is easy to work with statistically is that we can simply re-
define these clusters as our experimental units of interest. Then, the fact that
there is no cross-cluster interference means that SUTVA holds at the level of
cluster; we can thus run a cluster-randomized experiment that we then analyze
using standard techniques.

Example 15. Crépon et al. [2013] study community-level effects of job-search
assistance programs. Such job-search programs help program participants find
jobs; but the authors are concerned that they may be doing so at the expense of
non-participants. To measure community effects, they identify 235 independent
labor markets (e.g., cities), and randomize each market to receive different
saturation levels (0%, 25%, 50%, 75%, or 100%) of job-search assistance for
active job seekers. The authors then run an analysis where they compare
community-level outcomes across markets with different saturation levels, i.e.,
they analyze the data as an RCT where each labor market is a unit and the
treatment given to the unit is the saturation level of job-search assistance. The
exposure mapping underlying this analysis is the cluster-interference model,
with job seekers clustered by labor market.
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Other applications call for more complex exposure mappings. For example,
in the setting of Example 11, the authors posit that a given farmers’ insurance
decisions may be affected by information received by their friends as well as
by them directly. This suggests using the framers’ social network to define an
exposure mapping, e.g., via the network-interference model below (with friends
acting as network neighbors).

Definition 11.1. Under the network-interference model, we assume that
each unit i = 1, . . . , n has a set of network neighbors Ni ⊂ {1, . . . , n}, with a
convention that i 6∈ Ni, such that the following exposure mapping holds:

Yi = Yi(Hi(W)), Hi(w) = (wj)j∈{i}∪Ni . (11.3)

In other words, the network-interference model is a generalization of the
cluster-interference model that allows for non-transitivity of spillovers, and the
network interference model reduces to the cluster interference model if we im-
pose transitivity {i}∪Ni = {j}∪Nj for all j ∈ Ni. Under network interference,
we can in general no longer eliminate all spillovers via clustering (because the
underlying network may be fully connected); and more careful inferential tech-
niques are thus needed. We will return to the question of estimating treatment
effects under network interference in Chapter 12. Before doing so, however, we
will first discuss how to test for the presence of interference below.

11.2 Permutation tests

In Example 11, Cai, Janvry, and Sadoulet [2015] were interested in measuring
spillovers from information sharing in a social network. Suppose that for each
unit i we know the friendsNi who could plausibly affect their insurance choices.
What might the most parsimonious model for spillovers look like? The network
interference model from Definition 11.1 provides one possible answer, but is
there evidence that the full generality of this model is needed?

In this setting, one could easily imagine a hierarchy of alternative exposure
mappings as follows::

• H0: No causal effects. Hi(w) = ∅, and Yi = Yi(∅) regardless of treatment.

• H1: No spillovers. Hi(w) = wi, and Yi = Yi(Wi) like in Chapter 1.

• H2: Anonymous network interference. Hi(w) = (wi, zi), where zi =∑
j∈Ni wi / |{Ni}| is the fraction of treated friends and Yi = Yi(Wi, Zi).

• H3: Network interference. Hi(w) = (wj)j∈{i}∪Ni , and Yi = Yi(Hi).
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• H4: Generic spillovers. Hi(w) = w, and Yi = Yi(W).

The questions about the structure of treatment effects asked in the previous
paragraph can then be formalized via null-hypothesis testing. For example,
one might first want to test the null “H0 : no causal effects” and then, if that
test rejects, test “H1 : no spillovers”, etc., until one finds an exposure mapping
that is not rejected given the data at hand.

Our task is to develop methods for testing each of these nulls. Here, we
will do so via permutation testing. We will propose specific tests for H0 and
H1, and give a general result that can also be used to design tests more the
subsequent hypotheses.

The main idea of a permutation test is pick a test statistic, and then scram-
ble the treatment assignment in a way that shouldn’t affect the test statistic
under the posited null hypothesis. By construction, we should expect that—if
the null holds—then the test statistic evaluated on the original data should fit
comfortably within the range on test statistics obtained after scrambling; and
if the original test statistic is in fact an outlier we take this as evidence against
the null.

Remark 11.1. In our discussion below, we will develop tests for individual
hypotheses. It might seem that the program outlined above, i.e., where we
sequentially test hypotheses until one fails to reject, would require a multiple
testing correction. However, there is in fact no issue with multiple testing
here because all null hypotheses are nested, and sequentially running tests
on the most-to-least restrictive nulls until one of them fails to reject (and then
stopping) is simultaneously be valid against all nulls thanks to the closed testing
principle [Marcus, Peritz, and Gabriel, 1976].

Testing the sharp null We first consider the design of a permutation test
against the no-causal-effect null H0. This is a “sharp” null in that it fully
specifies how treatment affects outcomes (i.e., in no way whatsoever), and so
it can be approached using the classical approach of Fisher [1935]: We first
choose a test statistic that is likely to take on a large value when the null
doesn’t hold, e.g.,62

T (Y, w) =

∣∣∣∣∣
∑
{i:wi=1} Yi

|{i : wi = 1}|
−
∑
{i:wi=0} Yi

|{i : wi = 0}|

∣∣∣∣∣ , (11.4)

62This test statistic is simple, but from a large-sample theory point of view others may be
preferable; see the bibliographic notes at the end of this chapter for a discussion.
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and then reject the null if the test statistic as computed on the realized treat-
ment vector is unusually large relative to values it takes on alternative treat-
ment randomizations we could have (but didn’t) get. An important fact in
enabling this approach is that, under H0, treatment has no effect on outcomes,
and so

T (Y, w) = T (Y(w), w) for all w ∈ {0, 1}n , (11.5)

meaning that—again under the null—we are able impute the actual test statis-
tic we would have computed under different treatment randomizations.

Assumption 11.2. Treatment is assigned according to a completely random-
ized design: There is a set of possible treatment vectors w over {0, 1}n such
that P [W = w] = 1/ |W| for all w ∈ W , independently of potential outcomes.

Theorem 11.1. Suppose that Assumption 11.2 holds. Pick any test statistic
T (Y, W) and a number of permutations B ≤ |W| − 1, and let W′

1, . . . , W′
B

be drawn uniformly at random and without replacement from W\W. Then,
the permutation p-value63

p =
1

1 +B

(
1 +

B∑
b=1

1 ({T (Y, W) ≤ T (Y, W′
b)})

)
(11.6)

is valid against the null, i.e., under H0, P [p ≤ α] ≤ α for all 0 ≤ α ≤ 1.

Proof. Let W ′ = {W, W′
1, . . . , W′

B} be the unordered set of considered per-
mutations. By Assumption 11.2, under H0,

P
[
W = w

∣∣W ∈ W ′, Y
]

=
1

1 +B
for all w ∈ W ′. (11.7)

Thus, writing T ′ = {T (Y, w) : w ∈ W ′} for the set of considered test statistics
we see that, conditionally on Y and the fact that W ∈ W ′, the realized test
statistic value T (Y, W) is takes values uniformly at value within T ′. It follows
that, under Assumption 11.2 and H0, p from (11.6) takes values uniformly at
random over {1/(1 +B), 2/(1 +B), . . . , 1} if there are no ties in T ′, and ties
can only make p strictly larger.

63The use of randomization is optional. Setting B = |W| − 1 will result in running a
permutation over all possible randomizations W, and recovers Fisher’s exact test.
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Testing for interference The next question is to design a test for H1, i.e.,
to test whether SUTVA holds or instead there is evidence of spillovers. To
start, we again need to choose a test statistic that will have power to measure
deviations from the null—and there are many ways of doing so. Following
Aronow [2012], we here consider test statistics that first choose a set of fo-
cal units F ⊂ {1, . . . , n}, and set T = TF (Y, w) to be some pre-specified
functional that only considers outcomes within the focal set. For example, in
settings where we believe that spillovers will only really manifest themselves on
untreated units (e.g., with informational intervention as in Example 11), one
natural choice for T would be use the z-coefficient in the regression

TF (Y, w) = OLS (Yi ∼ zi : i ∈ F , wi = 0) , zi =
∑
j∈Ni

wj / |{Ni}| (11.8)

as our test statistic.
At this point, however, we face a challenge. When testing the sharp null,

(11.5) enabled us to compute counterfactual test statistics for any treatment
assignment w under H0. Now, however, treatment can affect outcomes under
H1 (via the direct effect), and so we only have access to the weaker guarantee

TF (Y, w) = TF (Y(w), w) if wi = Wi for all i ∈ F . (11.9)

Thus, when designing a permutation test for H1, we can only consider those
treatment assignments w which match to realized treatment W on the focal
set. Doing so requires more delicate methods, which will follow from the general
result given below.

Remark 11.2. With any focal unit based approach, we need the set F of focal
units not to be either too big or too small in order for T to have power. If the
set of focal units F is too small the regression (11.8) will be noisy; whereas
if the set of focal units F is too large the set of allowed permutations that
preserve treatment assignment over F will be too small, thus again resulting
in a loss of power. The optimal size of F will depend on the application.

Permutation tests for composite nulls In our setting, a composite null
is any null hypothesis that allows W to have some effect on Y, but restricts
how these effects can manifest themselves. To understand how to design per-
mutation tests for composite nulls, it is helpful to review the ingredients that
made our test for H0 work:

1. Our knowledge of the randomization design enabled us to create a setW ′
of possible treatment assignments (which includes the realized one).
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2. Under the null hypothesis, T (Y(w), w) = T (Y(W), w) for all w ∈
W ′, and so we can impute the counterfactual test statistics T (Y(w), w)
we would have observed under alternate randomizations using only the
observed outcomes Y = Y(W).

3. Conditionally on knowing that we chose the set W ′ in step 1, the distri-
bution of W is uniformly random over W ′.

The key step here is step 2; and, under the sharp null H0, it is easy to see that
we can always impute T (Y(w), w) from Y for any test statistic T and any
treatment vector w.

In contrast, under composite nulls, we will no longer be able to impute
any and all test statistics for all w because the treatment now can have some
(restricted) effects on the outcomes. We will still be able to make progress by
being more careful in our choice of T and set W ′ of considered treatments;
doing so, however, leads to subtle challenges in step 3 above.

The general roadmap for designing permutation tests for a generic compos-
ite null H involves first observing the realized treatment W, and then choosing
a set of alternate treatment assignmentsW ′ that allows us to impute test statis-
tic T under H. The following result gives general guarantees for permutation
tests of this type.

Theorem 11.2. Suppose that we want to test a composite null hypothesis H
and that Assumption 11.2 holds. After observing W, we choose a (poten-
tially random) set of treatment vectors W ′ ⊆ W with W ∈ W ′, and a (poten-
tially random) test statistic with the property that, under H, T (Y(w), w) =
T (Y(W), w) for all w ∈W. Let

ϕw (W ′, T ) = P
[
W ′, T

∣∣W = w
]

(11.10)

denote the probability of selecting the treatment setW ′ and test statistic T given
that the realized treatment vector was w. Then, the re-weighted permutation
p-value

p =

∑
w∈W ′ ϕw (W ′, T ) 1 ({T (Y, W) ≤ T (Y, w)})∑

w∈W ′ ϕw (W ′, T )
(11.11)

is valid against the null, i.e., under H, P [p ≤ α] ≤ α for all 0 ≤ α ≤ 1.

Proof. The pair (W ′, T ) is chosen only based on knowledge of W, and under a
constraint that we must have W ∈ W ′. Thus, under Assumption 11.2, we can
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use Bayes’ rule to verify that, conditionally on knowing that W ′ was selected
as the set of considered randomizations and that Y was observed,

P
[
W = w

∣∣W ′, Y
]

= ϕw (W ′, T )
/ ∑

w′∈W ′
ϕw′ (W ′, T ) (11.12)

for all w ∈ W ′. The proof then follows exactly the same argument as used
in Theorem 11.1. Let T be as defined in the proof of Theorem 11.1, and
let S(1) ≥ S(2) ≥ . . . ≥ S(|W ′|) be order statistics of the test statistics, with
associated weights ϕ(1), . . . , ϕ(|W ′|) used in (11.11). If there are no ties in T

P
[
p ≤ α

∣∣W ′, Y
]

= max

t =
k∑
j=1

ϕ(j) /

|W ′|∑
j=1

ϕ(j) : t ≤ α

 , (11.13)

and the presence of ties will again only make p strictly larger.

Application: Testing H1 We now return to the question of how to design a
permutation test for the presence of interference using the test statistic (11.8).
Using notation from Theorem 11.2, the imputability property (11.9) for fo-
cal unit based test statistics implies that we can use them together with the
permutation set

W ′ (F) = {w ∈ W : wi = Wi for all i ∈ F} . (11.14)

Theorem 11.2 then applies directly. The remaining challenge is that we now
need to account for the weights ϕw(F) = P

[
F
∣∣W = w

]
, which measure de-

pendence between our choice of focal units and the realized randomization.
In principle, one could compute these quantities and apply (11.11) directly;
however, in the existing literature, most proposals have sought choices of F
obviate the need to consider weights by construction.

One way to side-step this challenge, discussed by Athey, Eckles, and Imbens
[2018a], is to choose the set of focal units F deterministically, without looking
at W. In this case, P

[
F
∣∣W = w

]
= 1, and the weights vanish and can thus

be ignored. Such an approach, however, may not be optimal in terms of power;
e.g., if we use (11.8) as our test statistic, then there’s seemingly no value from
including any treated units in F (since they are ignored by the test statistic).

Basse, Feller, and Toulis [2019] noted that in some settings we can also
construct randomized choices F for which the weights ϕw(F) vanish—and
that this can help with power. The main idea is that if we can guarantee that
ϕw(F) is constant for all w ∈ W ′, the we can ignore the weights because they
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cancel out in (11.11). Consider, for example, a design where all units are first
divided into equally sized clusters Ck for k = 1, . . . , K, and then we randomize
n1 units to treatment such that at most one person per cluster is treated, i.e.,
we run a completely randomized experiment over64

W =

w ∈ {0, 1}n :
∑
i

wi = n1,
∑
{i∈Ck}

wi ≤ 1 for all 1 ≤ k ≤ K

 . (11.15)

Then, if we construct F by selecting exactly one control unit per cluster, one
can check that in fact ϕw(F) is constant for all w ∈ W ′.

11.3 Bibliographic notes

The general approach of modeling causal effects under interference using an
extended set of potential outcomes goes back to early work by Halloran and
Struchiner [1995], Hudgens and Halloran [2008] and Sobel [2006]. The use of
exposure mappings to mitigate the curse of dimensionality was introduced by
Aronow and Samii [2017] and Manski [2013].

The paradigm for causal inference used in Chapter 11.2, i.e., one focused on
testing various null hypotheses that restrict how treatment can affect potential
outcomes, is often called the “Fisherian approach” in recognition of the seminal
work of Fisher [1935] on permutation testing. The Fisherian approach is then
contrasted with the “Neymanian approach”, which is focused on estimating
average treatment effects (as opposed to exact restrictions on the potential
outcomes)—and is also the approach we have focused on in most of this book.
When the distinction needs to be made, the sharp null (e.g., Yi(0) = Yi(1) for
all i) is often referred to as the Fisher null, while the usual (or weak) null (e.g.,∑

i (Yi(1)− Yi(0)) = 0) is referred to as the Neyman null; see Ding [2017] for
further discussion.

Our discussion of permutation tests under interference is adapted from
Athey, Eckles, and Imbens [2018a] and Basse, Feller, and Toulis [2019]. One
aspect of permutation testing that we have not put much emphasis on in this
chapter is the choice of test statistic: We simply used point estimates of vari-
ous quantities likely to be non-zero under the alternative, e.g., the difference in
means in (11.4). Permutation tests are exact under the sharp null, regardless

64Basse, Feller, and Toulis [2019] considered a different, two-stage design where we first
choose which clusters give to the treatments to uniformly at random, and then pick one
treated unit from each of these clusters—again uniformly at random. However, in the case
of equally sized clusters, their design matches the completely randomized one considered
here.
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of our choice of test statistic. However, the choice of test statistic matters in
terms of the power we get under various alternatives of interest, and here test
statistics based on point estimates of treatment effects, e.g., the difference in
means used in (11.4), can perform unexpectedly poorly.

To understand the power issue, consider the large-sample behavior of a
permutation test in a setting with(

Yi(0)
Yi(1)

)
∼ N

((
µ0

µ1

)
,

(
σ2

0 0
0 σ2

1

))
, (11.16)

and n1/n = π ∈ (0, 1). The difference in means test static on the original data
has distribution T0 = N (µ1 − µ0, σ

2
T/n) with σ2

T = σ2
0/(1 − π) + σ2

1/π. The
usual t-test would then reject the null when the ratio

√
nT0/σT is far from 0.

On the other hand, because the permutation test jumbles the data, one can
check that the behavior of T ′b depends on moments of the pooled data instead,
and the permutation distribution can be approximated as [Romano, 1990]

L (T ′b) ≈ N
(
0, σ2

Y /n
)
, σ2

Y = π(1− π) (µ1 − µ0)2 +
(1− π)σ2

0 + πσ2
1

π(1− π)
, (11.17)

thus implying that, effectively, the permutation test rejects the null when√
nT0/σY is far from 0. We can then directly read out several unexpected be-

haviors of the permutation test from this comparison. If σ2
0 = σ2

1 and µ1 6= µ0

(i.e., the treatment shifts the mean but not that variance), then σ2
Y > σ2

T

and so the permutation test will be less powerful than the usual t-test. On
the other hand, permutation tests with a difference in means test statistic can
have non-trivial power in settings where the Neymanian null of zero average
effect holds, i.e., they are generally not valid (even asymptotically) against the
Neymanian null. To see this, note that when if µ1 = µ0, π < 0.5 and σ2

1 > σ2
0,

then σ2
Y < σ2

T and so the permutation test must have more power than the
usual t-test (which in turn has the nominal level here).

One can solve this problem—and generally improve the large-sample behav-
ior of permutation tests—by using studentized test statistics, e.g., a two-sample
t-statistic instead of (11.4), or a heteroskedasticity-robust regression t-statistic
instead of (11.8). Chung and Romano [2013] provide results implying that, at
least in the setting of Theorem 11.1, a permutation test using a studentized test
statistic pairs finite-sample validity against the sharp (Fisher) null hypothesis
while matching the behavior of the usual test against the Neymanian null of
a zero average treatment effect in large samples. Cohen and Fogarty [2022]
discusses further results on unifying Neymanian and Fisherian approaches to
testing for the presence of causal effects.
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Chapter 12
Estimating Treatment Effects
under Interference

In the previous chapter, we introduced exposure mappings as a tool for mod-
eling cross-unit interference, and permutation-based methods for testing for
the presence of interference. The next natural question—and our focus in this
chapter—is: Once we’ve accepted that interference exists, how can we estimate
relevant treatment effects that account for interference?

Exposure effects For simplicity, we will here focus on a setting here As-
sumption 11.1 holds with a finite-cardinality exposure with a shared domain.
Specifically, we will consider a setting where we have i = 1, . . . , n units with
outcomes Yi ∈ R and treatment Wi ∈ {0, 1}. There can be cross-unit inter-
ference; however, this interference can be captured in terms of an exposure
mapping Hi : {0, 1}n → H with a shared domain H with |H| < ∞. We thus
have potential outcomes with a consistency condition

{Yi(h)}h∈H , Yi = Yi(Hi(W)). (12.1)

Given this assumption, we can define various sample-average treatment effects
by comparing mean potential outcomes across exposure levels h, h′ ∈ H,

τ̄(h, h′) =
1

n

n∑
i=1

(Yi(h
′)− Yi(h)) . (12.2)

Our goal is to estimate these quantities and provide confidence intervals for
them.

Example 16. Rogers and Feller [2018] reports results on a randomized trial
to improve school attendance among students with high risk of absenteeism
by sending attendance information to parents. In some settings, a family had
multiple students eligible for the study, and the authors were interested in
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spillovers: Did sending attendance information about one student also affect
their siblings’ behavior? To study this question, the authors posited an ex-
posure mapping with 3 exposure levels: (1) student received treatment; (2)
student untreated by with treated sibling; and (3) student in family with no
treatment. Then, one can define a number of natural estimands of the form
(12.2), such as a direct effect (1) vs. (3), and a spillover effect (2) vs. (3).

Unbiased estimation The setup considered here, i.e., with a randomized
trial executed on a set of n unspecified study participants, is closely related to
the setting of Theorem 1.1, except that now of course SUTVA no longer holds
and we instead need to rely on a more complex exposure mapping to capture
interference. And it turns out that an analogue to Theorem 1.1 still holds: We
can get unbiased estimates for the exposure contrasts (12.2) essentially without
further assumptions.

The simplest way to construct unbiased estimators here is via inverse-
propensity weighting (IPW). Suppose that treatment is Bernoulli-
randomized,

Wi ∼ Bernoulli(ei), 0 < ei < 1, (12.3)

independently for all i = 1, . . . , n, and let ei(h) = P [Hi(W) = h] with treat-
ment generated according to (12.3). The, the natural IPW estimator,

τ̂IPW (h, h′) =
1

n

n∑
i=1

(
1 ({Hi(W) = h′})Yi

ei(h′)
− 1 ({Hi(W) = h})Yi

ei(h)

)
, (12.4)

is unbiased for τ̄(h, h′). We use the notation of the type

EW [τ̂IPW (h, h′)] = E
[
τ̂IPW (h, h′)

∣∣ {Yi(h)}i=1, ..., ,n;h∈H

]
, (12.5)

i.e., where EW denotes expectations over random treatment assignment while
holding potential outcomes fixed.

Theorem 12.1. Under assumptions (12.1) and (12.3), suppose furthermore
that ei(h), ei(h

′) > 0 for all i = 1, . . . , n. Then

EW [τ̂IPW (h, h′)] = τ̄(h, h′). (12.6)
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Proof. Invoking (12.1) and randomization yields

EW [τ̂IPW (h, h′)]

= EW

[
1

n

n∑
i=1

(
1 ({Hi(W) = h′})Yi(h′)

ei(h′)
− 1 ({Hi(W) = h})Yi(h)

ei(h)

)]

=
1

n

n∑
i=1

(
EW [1 ({Hi(W) = h′})]Yi(h′)

ei(h′)
− EW [1 ({Hi(W) = h})Yi(h)]

ei(h)

)
=

1

n

n∑
i=1

(Yi(h
′)− Yi(h)) .

For the last equality we also used (12.3) and the fact that ei(h), ei(h
′) > 0.

Inference and uncertainty quantification Where things get more chal-
lenging is in seeking confidence intervals. The result above was a generalization
of Theorem 1.1 to settings with interference, with a proof following exactly the
same blueprint. In Chapter 1, when we sought to move past unbiasedness
and establish inferential results, we added an extra assumption that poten-
tial outcomes are independently sampled from a broader population (see, e.g.,
Theorem 1.2). However, while such an IID-sampling assumption is easy to
make under SUTVA, it is much more challenging to posit general sampling as-
sumptions for potential outcomes under interference. Units now interact with
each other (e.g., they are friends in a social network), and writing down credi-
ble generative models that capture such cross-unit relationships (e.g., writing
down credible generative models for friendship networks) is something that re-
quires deep subject matter knowledge and cannot easily be done at the level
of abstraction sought here.

In this chapter, we will pursue an alternate route and seek to establish
inference results that only depend on random treatment assignment—and do
not make any sampling assumptions on the potential outcomes. In the causal
inference literature, this approach is often referred to as the finite-population
approach, as it does not appeal to the existence of a superpopulation from which
units were drawn. We will start, in Section 12.1, by reviewing finite-population
methods under SUTVA—and revisiting our discussion from Chapter 1 with-
out the IID sampling assumption. Then, in Section 12.2, we will extend this
discussion to settings with interference.
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12.1 Finite-population methods

Our goal here is to provide an alternative to Theorem 1.2 that enables
inference in randomized-controlled trials under SUTVA without relying on
superpopulation-sampling assumption. Finite-population analysis of random-
ized trials, including the results given here, go back to Neyman [1923]. The
following result presents what’s often called the Neyman-variance analysis in
the case of a Bernoulli design.65 Under SUTVA, we are only interested in the
treatment-control contrast, and so will use short-hand τ̄ := τ̄(0, 1) for the
sample-average treatment effect (SATE), τ̂IPW := τ̂IPW (0, 1) for the estimated
treatment effect, and ei = ei(1) for the propensity score.

Theorem 12.2. Under the setting of Theorem 12.1, suppose furthermore that
SUTVA holds, i.e., Hi(w) = wi. Then

nVarW [τ̂IPW ] = σ̄2 ≤ σ2,

σ̄2 =
1

n

n∑
i=1

(
Yi(0)2

1− ei
+
Yi(1)2

ei
− (Yi(1)− Yi(0))2

)
,

σ2 =
1

n

n∑
i=1

(
Yi(0)2

1− ei
+
Yi(1)2

ei

)
.

(12.7)

Furthermore, σ2 admits an unbiased estimator,

EW
[
V̂
]

= σ2, V̂ =
1

n

n∑
i=1

(
(1−Wi)Y

2
i

(1− ei)2 +
WiY

2
i

e2
i

)
. (12.8)

Proof. Thanks to Theorem 12.1, we have

nVarW [τ̂IPW ] = nEW
[
(τ̂IPW − τ̄)2]

= nEW

( 1

n

n∑
i=1

(
Wi

ei
− 1−Wi

1− ei

)
Yi −

1

n

n∑
i=1

(Yi(1)− Yi(0))

)2
 .

By SUTVA and because the Wi are independent of each other, we can further

65Neyman [1923] worked under complete randomization, i.e., where the number of treated
units is fixed a-priori; however, all the key insights are the same.
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expand this expression as

nEW

( 1

n

n∑
i=1

(
Wi

ei
− 1

)
Yi(1)−

(
1−Wi

1− ei
− 1

)
Yi(0)

)2


=
1

n

n∑
i=1

EW

[((
Wi

ei
− 1

)
Yi(1)−

(
1−Wi

1− ei
− 1

)
Yi(0)

)2
]

=
1

n

n∑
i=1

((
1

ei
− 1

)
Yi(1)2 +

(
1

1− ei
− 1

)
Yi(0)2 + 2Yi(0)Yi(1)

)
=

1

n

n∑
i=1

(
Yi(1)2

ei
+
Yi(0)2

1− ei
− (Yi(1)− Yi(0))2

)
,

where the second equality above follows by computing binomial probabilities
and the third by expanding out the square (Yi(1) − Yi(0))2. This establishes
(12.7). Finally, (12.8) can be proven by following the argument used in Theo-
rem 12.1.

The main observation is that, under the finite-population model, the vari-
ance σ̄2 depends on differences of potential outcomes, and cannot generally
be estimated from data without further assumptions. However, the variance
admits a simple upper bound σ2 that is identified from data—and in fact this
variance estimate corresponds to the usual variance estimate for τ̂IPW under
IID sampling. Thus, exact inference for the ATE under IID sampling provides
conservative inference for the SATE in the finite-population model. This fact
will also show up under interference.

It remains to establish a construction for confidence intervals. Since we no
longer have access to an IID stream of data, we will no longer be able to invoke
a classical central-limit theorem; rather, we will need to rely on finite-sample
Gaussian approximation results. In the result below, we will also consider a
self-normalized version of IPW,

τ̂SIPW =

∑n
i=1WiYi/ei∑n
i=1 Wi/ei

−
∑n

i=1(1−Wi)Yi/(1− ei)∑n
i=1(1−Wi)/(1− ei)

, (12.9)

as this generally improves large-sample performance (see, e.g., Exercise 1).

Theorem 12.3. Suppose we have a sequence of randomized trials with growing
sample size n that all satisfy the conditions of Theorem 12.2, and write τ̄n for
the SATE in each of these randomized trials. Suppose furthermore that there
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are constants η, M <∞ such that η ≤ ei ≤ 1− η and |Yi(0)| , |Yi(1)| ≤M for
all units, and that lim infn→∞ σ̄

2
n > 0 with σ̄2

n as defined below. Then,

√
n

(
τ̂SIPW − τ̄n

σ̄n

)
⇒ N (0, 1) , µ̄n(w) =

1

n

n∑
i=1

Yi(w), (12.10)

σ̄2
n =

1

n

n∑
i=1

(
(Yi(0)− µ̄n(0))2

1− ei
+

(Yi(1)− µ̄n(1))2

ei
− (Yi(1)− Yi(0))2

)
,

Furthermore, the following variance estimator

µ̂n(0) =
1

n

n∑
i=1

(1−Wi)Yi
1− ei

, µ̂n(1) =
1

n

n∑
i=1

WiYi
ei

,

σ̂2
n =

1

n

n∑
i=1

(
(1−Wi) (Yi − µ̂n(0))2

(1− ei)2 +
Wi (Yi − µ̂n(1))2

e2
i

)
,

(12.11)

is asymptotically conservative, lim supn→∞ σ̄n/σ̂n ≤p 1, and usual normal con-
fidence intervals are valid

lim sup
n→∞

P
[
|τ̂SIPW − τ̄n| ≤ σ̂n/

√
nΦ−1(1− α/2)

]
≤ 1− α, (12.12)

for any 0 < α < 1.

Proof. Thanks to self-normalization and SUTVA, we have an error decompo-
sition

τ̂SIPW − τ̄n = ∆(1)
/ 1

n

n∑
i=1

Wi

ei
−∆(0)

/ 1

n

n∑
i=1

1−Wi

1− ei
,

∆(0) =
1

n

n∑
i=1

(1−Wi) (Yi(0)− µ̄n(0))

1− ei
, ∆(1) =

1

n

n∑
i=1

Wi (Yi(1)− µ̄n(1))

ei
.

By Theorems 12.1 and 12.2, we immediately get

EW [∆(1)−∆(0)] = 0, n VarW [∆(1)−∆(0)] = σ̄2
n.

Furthermore, our boundedness assumptions imply that all summands compris-
ing ∆(0) and ∆(1) are bounded by 2M/η, and so the Berry–Esseen bound
implies that

sup
z∈R

∣∣∣∣P [√n (∆(1)−∆(0))

σ̄n
≤ z

]
− Φ(z)

∣∣∣∣ ≤ 8CM3/η3

σ̄3
n

√
n

, (12.13)
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where Φ(·) is the standard Gaussian cumulative distribution function and C
is the Berry–Esseen constant; we also note that the right-hand side term of
(12.13) goes to 0 with n because we have assumed that lim infn→∞ σ̄

2
n > 0.

Meanwhile, again thanks to our overlap and boundedness assumptions, we
can use standard concentration arguments to verify that

1

n

n∑
i=1

1−Wi

1− ei
− 1,

1

n

n∑
i=1

Wi

ei
− 1 = OP

(
1√
n

)
,

and also that

∆(0), ∆(1) = OP
(

1√
n

)
.

This implies that

τ̂SIPW − τ̄n = ∆(1)−∆(0) +OP
(

1

n

)
,

and so (12.10) follows from (12.13). Finally, we can again use concentration
arguments to verify that

lim
n→∞

σ̂2
n − σ2

n =p 0, σ2
n =

1

n

n∑
i=1

(
(Yi − µ̄n(0))2

1− ei
+

(Yi − µ̄n(1))2

ei

)
,

and by Theorem 12.2 we also get σ2
n ≥ σ̄2

n. The claimed result then follows
because lim infn→∞ σ̄

2
n > 0.

Note that in the case of uniformly randomized trials (i.e., ei = π is the
same for all units), the final obtained confidence interval construction (12.12)
is exactly the same as (1.11) from Chapter 1.66 Earlier, we had shown (via a
simple argument) that (1.11) is asymptotically exact for the ATE under IID
sampling assumptions. It’s somewhat remarkable that, as found here, the same
confidence interval is also asymptotically conservative for the SATE without
making any sampling assumptions.

66In the variance estimate V̂DM in (1.10) we used a normalizations n0/n and n1/n which
in (12.11) are replaced with 1−π and π respectively; however, this distinction is immaterial
under 1st-order analysis. The variance estimates are asymptotically equivalent, and either
of them can be used for confidence intervals when in the uniformly randomized setting with
ei = π for all units.
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12.2 Confidence intervals for exposure effects

We now return to our main task of interest, i.e., inference for exposure effects
as defined in (12.2). In addition to assuming a finite-cardinality exposure
mapping, we will also assume network interference structure as in Definition
11.1, i.e., that each unit i has a known set Ni of influencer units (or, informally
friends), with i 6⊂ Ni ⊂ {1, . . . , n}, such that

Yi(w) = Yi(w
′) whenever wi = w′i and wj = w′j for all j ∈ Ni. (12.14)

In conjunction with (12.1), the condition (12.14) can be simplified to a require-
ment that Hi only depends on wi and wNi .

The two assumptions we make on the exposure mapping, (12.1) and (12.14),
play different roles: (12.1) is primarily used to justify the estimands (and we
will invoke it in a SUTVA-like manner), whereas (12.14) is used to control
correlations and establish convergence properties for sample averages. In par-
ticular, the network interference model induces a natural randomization de-
pendency graph G ∈ {0, 1}n×n on potential outcomes,

Gij = 1 ({Ni ∪ {i}} ∩ {Nj ∪ {j}}) 6= ∅, (12.15)

i.e., Gij = 1 if and only if there is a unit k ∈ {1, . . . , n} whose treatment can
affect both Yi and Yj under (12.14).

Under Bernoulli randomization (12.3) and the network restriction (12.14),
one can immediately verify that whenever Gij = 0,

Hi(W) ⊥⊥ Hj(W) and so Yi ⊥⊥W Yj, (12.16)

where the latter statement means that Yi is independent of Yj under ran-
domness from the treatment assignment (and either conditionally on potential
outcomes or treating potential outcomes as fixed).

Given these ingredients, we are now ready to generalize the results from
Section 12.1 to settings with interference, and provide both an exact expression
for the variance of τ̂IPW (h, h′) and a conservative but estimable bound for it.
Here, we will start down by writing our variance estimator; our target variances
will then be readily expressible in terms of moments of the variance estimator.

For any h ∈ H, define inverse-propensity weights as Γi(h) =
1 ({Hi(W) = h}) /ei(h), and let Γ(h) ∈ Rn be the vector of these weights
for all units. Given this notation and our exposure mapping,

τ̂IPW (h, h′) =
1

n

n∑
i=1

(Γi(h
′)Yi(h

′)− Γi(h)Yi(h)) , (12.17)
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where only the weights Γi are taken to be random. This formulation, as well
as the network independence property of the Γi established in (12.16), then
suggests estimating the variance of the IPW estimator via the following a “het-
eroskedasticity and autocorrelation consistent” (HAC) construction:67

σ̂2(h, h′) =
1

n
(Γ(h′)�Y − Γ(h)�Y)

>
G (Γ(h′)�Y − Γ(h)�Y) , (12.18)

where � denotes elementwise product.68 The following result establishes that
this variance estimate is in fact conservative.

Theorem 12.4. Under the setting of Theorem 12.1, suppose furthermore
that (12.14) holds and that we consider a pair of exposure h, h′ ∈ H with
ei(h), ei(h

′) > 0 for all i = 1, . . . , n. Write σ2(h, h′) := EW [σ̂2(h, h′)] for the
variance estimate given in (12.18), and σ̄2(h, h′) := nVarW [τ̂IPW (h, h′)] for
the scaled randomization variance of the IPW estimator. Then,

σ̄2(h, h′) = σ2(h, h′)− n−1 (Y(h′)−Y(h))
>
G (Y(h′)−Y(h)) , (12.19)

and in particular σ̄2(h, h′) ≤ σ2(h, h′).

Proof. Throughout this proof, we will use the shorthand Γi(h) =
1 ({Hi(W) = h}) /ei(h) for the inverse-propensity weights. Thanks to The-
orem 12.1 and (12.1), we have

σ̄2(h, h′) := nVarW [τ̂IPW (h, h′)] = nEW
[
(τ̂IPW (h, h′)− τ̄(h, h′))

2
]

= nEW

(( 1

n

n∑
i=1

(Γi(h
′)− Γi(h))Yi −

1

n

n∑
i=1

(Yi(h
′)− Yi(h))

)2


= nEW

( 1

n

n∑
i=1

(Γi(h
′)− 1)Yi(h

′)− 1

n

n∑
i=1

(Γi(h)− 1)Yi(h)

)2
 .

We can simplify this expression in terms of the exposure-covariance matrices

Uij(h, h
′) = E [(Γi(h)− 1) (Γj(h

′)− 1)] = E [Γi(h)Γj(h
′)]− 1

67The HAC construction is only used to motivate the functional form of the variance
estimator below; its consistency in our setting will be established from first principles below.
See White [1984, Chapter VI.4] for a general discussion of HAC estimators for correlated
random variables, and Kojevnikov, Marmer, and Song [2021] for recent results on HAC
estimators in a model with network correlation.

68As a sanity check one can verify that, under SUTVA (i.e., with G = In×n), (12.18)
exactly matches (12.8).
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and U(h) = U(h, h), etc., resulting in

σ̄2(h, h′) = = n−1 Y(h)>U(h)Y(h) + n−1 Y(h′)>U(h′)Y(h′)

− 2n−1 Y(h)>U(h, h′)Y(h′).

We next turn to studying the expectation of the proposed variance estimate
σ̂2(h, h′). A direct calculation shows that

σ2(h, h′) := EW
[
σ̂2(h, h′)

]
= n−1 Y(h)>E

[
Γ(h)>GΓ(h)

]
Y(h)

n−1 Y(h′)>E
[
Γ(h′)>GΓ(h′)

]
Y(h′) + 2n−1 Y(h)>E

[
Γ(h)>GΓ(h′)

]
Y(h′).

Furthermore, we see from (12.16) that

Uij(h) = Uij(h
′) = Uij(h, h

′) = 0 whenever Gij = 0,

and so we can re-express σ2(h, h′) in terms the exposure-covariance matrices
used above as follows.

σ2(h, h′) = = n−1 Y(h)> (U(h) +G) Y(h) + n−1 Y(h′)> (U(h′) +G) Y(h′)

− 2n−1 Y(h)> (U(h, h′) +G) Y(h′).

We can now compare our expressions for σ2(h, h′) and σ̄2(h, h′),

σ2(h, h′)− σ̄2(h, h′) = = n−1 Y(h)>GY(h) + n−1 Y(h′)>GY(h′)

− 2n−1 Y(h)>GY(h′)

= n−1 (Y(h′)−Y(h))
>
G (Y(h′)−Y(h)) ,

and this quantity is non-negative because G is positive semi-definite.

Following our approach in the SUTVA case, we next consider the self-
normalized estimator,

τ̂SIPW (h, h′) =

∑n
i=1 Γi(h

′)Yi∑n
i=1 Γi(h′)

−
∑n

i=1 Γi(h)Yi∑n
i=1 Γi(h)

, (12.20)

and seek to establish a central limit theorem for it. As before, we work under
a sequence of randomized trials with growing sample size n, and write

µ̄n(h) =
1

n

n∑
i=1

Yi(h), τ̄n(h, h′) = µ̄n(h′)− µ̄n(h). (12.21)
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We will also use a modified variance estimator that accounts for self-
normalization:

µ̂n(h) =
1

n

n∑
i=1

Γi(h)Yi,

σ̂2
n(h, h′) = (Γ(h′)� (Y − µ̂n(h′))− Γ(h)� (Y − µ̂n(h)))

>
Gn

(Γ(h′)� (Y − µ̂n(h′))− Γ(h′)� (Y − µ̂n(h))) ,

(12.22)

where Y − µ̂n(h) subtracts the scalar µ̂n(h) from all entries of Y.

Theorem 12.5. Suppose we have a sequence of randomized trials with growing
sample size n that all satisfy the conditions of Theorem 12.4. Write deg(Gn) for
the maximal degree of the randomization dependency graph in the n-th problem,
and assume that limn→∞ n

−1/4deg(Gn) = 0. Suppose furthermore that there are
constants 0 < η, M, s2

0 <∞ such that ei(h), ei(h
′) ≥ η and |Yi(h)| , |Yi(h′)| ≤

M for all units throughout the sequence of problems, and that, using notation
from (12.23), we have σ̄2

n(h, h′) ≥ s2
0 for all n. Then,

√
n

(
τ̂SIPW (h, h′)− τ̄n(h, h′)

σ̄n(h, h′)

)
⇒ N (0, 1)

σ̄2
n(h, h′) = σ2

n(h, h′)− (Y(h′)− µ̄(h′)−Y(h) + µ̄(h))
>
Gn

(Y(h′)− µ̄(h′)−Y(h) + µ̄(h)) ,

(12.23)

where σ2
n(h, h′) denotes the randomization-expectation of an oracle version of

σ̂2
n(h, h′) from (12.22) with µ̂n(h) replaced with µ̄n(h), etc. Furthermore, our

variance estimator is asymptotically conservative, lim supn→∞ σ̄n/σ̂n ≤p 1, and
usual normal confidence intervals are valid

lim sup
n→∞

P
[
|τ̂SIPW (h, h′)− τ̄n(h, h′)|

≤ σ̂n(h, h′)/
√
nΦ−1(1− α/2)

]
≤ 1− α,

(12.24)

for any 0 < α < 1.

Proof. We again start by noting that, thanks to self-normalization and our
assumed exposure mapping,

τ̂SIPW (h, h′) = τ̄n(h, h′) + ∆(h′)
/ 1

n

n∑
i=1

Γi(h
′)−∆(h)

/ 1

n

n∑
i=1

Γi(h)

∆(h) =
1

n

n∑
i=1

Γi(h) (Yi − µ̄n(h)) .
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Theorems 12.1 and 12.4 immediately imply that, for all n,

EW [∆(h′)−∆(h)] = 0, VarW [∆(h′)−∆(h)] =
σ̄2
n(h, h′)

n
.

Furthermore, Baldi and Rinott [1989, Corollary 2] provide a Berry–Esseen
result for normal approximation of network-correlated random variables, which
in our setting implies that

sup
z∈R

∣∣∣∣P [√n (∆(h′)−∆(h))

σ̄n(h, h′)
≤ z

]
− Φ(z)

∣∣∣∣ ≤ 32
(

1 +
√

6
)√2M

ηs3
0

deg(Gn)

n1/4
.

Our assumption on the degree of Gn makes the right-hand side go to zero, and
thus √

n (∆(h′)−∆(h))

σ̄n(h, h′)
⇒ N (0, 1) .

The remainder of the proof follows the blueprint of Theorem 12.3 and so is
omitted; in particular, we note that our overlap assumption immediately im-
plies that 1

n

∑n
i=1 Γi(h)→p 1.

Remark 12.1. When G has block structure, the variance estimator (12.22)
is equivalent to usual cluster-robust inference variance estimator that is typi-
cally motivated using IID sampling assumptions (i.e., that clusters are sampled
IID); see also Abadie et al. [2023]. Thus, we have recovered a conservativeness
phenomenon analogous to the one derived by Neyman [1923] under SUTVA:
Standard variance estimators motivated by IID sampling (here, of clusters) is
conservative for the finite-population variance that arises from treatment ran-
domization alone in the setting where potential outcomes are considered as
deterministic.

Remark 12.2. The overlap assumption ei(h) ≥ η used in Theorem 12.5 essen-
tially requires Ni to be finite, even as the network grows (i.e., each unit is only
influenced by the treatment given to a finite number of other units). However,
even in this setting, the degree of G can grow large: This can happen if there
are some nodes that are very “popular”, in the sense that they influence many
other nodes (i.e., they belong to Nj for many other units j). In this context,
our assumption on deg(Gn) is essentially an upper bound on the strength of
outward influence: We do not allow there to be a node whose treatment affects
outcomes for more than n1/4 other units.
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12.3 Bibliographic notes

The finite-population model used in this chapter—as well as the approach to
inference via conservative, identifiable variance bounds—goes back to Neyman
[1923]. Here, we studied finite-population inference under Bernoulli trials; re-
sults under a number of different experimental designs is given in Li and Ding
[2017]. We note that the variance bound used in Theorem 12.2 is not the
only available bound; see Aronow, Green, and Lee [2014] for alternate propos-
als. Furthermore, the finite-population approach discussed here can also be
extended to much more complex randomization designs, e.g., rerandomization
as in Morgan and Rubin [2012].

Our approach to defining causal effects in terms of average outcomes un-
der different exposure types builds on Aronow and Samii [2017]. Aronow and
Samii [2017] also provided bounds on the variance of treatment effect estima-
tors under the Neyman model; the bound we use in Theorem 12.4 is due to
Leung [2022]. Building on this line of work, Sävje [2024] discusses interpre-
tation of exposure-averaging estimands when the exposure mapping may be
misspecified, while Leung [2022] provides inference results under an approxi-
mate network interference model, where interference effects decay (but do not
vanish) as units get farther from each other in a network. Viviano [2024] consid-
ers policy learning with interference under an exposure mapping assumption.
Ogburn et al. [2024] consider inference from observational data under network
interference. Harshaw, Sävje, and Wang [2022] propose an algorithmic frame-
work for producing IPW-like estimators for a number of causal target under
wide variety models for interference.

Finally, we also note that there exist alternative ways of defining causal
effects under interference that do not rely on well-specified exposure mappings.
One such approach involves defining average direct and indirect effects of a
treatment, which effectively measure how a unit getting treated affects the
unit itself or others, while marginalizing over the treatment received by others
[Halloran and Struchiner, 1995, Hu, Li, and Wager, 2022b, Sävje, Aronow, and
Hudgens, 2021]

τADE =
1

n

n∑
i=1

EW [Yi (wi = 1, W−i)− Yi (wi = 1, W−i)] ,

τAIE =
1

n

n∑
i=1

∑
j 6=i

EW [Yj (wi = 1, W−i)− Yj (wi = 1, W−i)] ,

(12.25)

where Yj (wi = 1, W−i) denotes the outcome we observe for the j-th unit by
setting the i-th treatment to 1 but letting others be as they are under the ran-
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domization distribution. Hu, Li, and Wager [2022b] interpret these estimands
in the context of a number of models for interference, and connect them to
notions of total treatment effects. Sävje, Aronow, and Hudgens [2021] provide
bounds for the average direct effect under a generic interference model, while
Li and Wager [2022] give exact large-sample asymptotics for the average direct
and indirect effects under a random graph generative model. Munro, Kuang,
and Wager [2021] consider large-sample behavior of the average direct and indi-
rect effects in a model where interference arises via equilibrium effects where in
a marketplace where prices align supply and demand; they also propose CATE-
like measures for treatment heterogeneity that can be used for spillover-aware
targeting.
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Chapter 13
Event-Study Designs

All examples considered in this book so far involve settings where we observe
a unit, they receive some treatment exposure (or not), and then reveal an
outcome. In applications, however, it is common to follow units over time and
to obtain multiple measurements from each unit. For example, when studying
the effect of a tax policy, we will often be able to follow a country over time—
and under different tax policies. Or, in medicine, we often follow a patient over
time as they go through a potentially complex treatment regimen.

This chapter—as well as the following two—will introduce methods for
causal inference in settings where units are followed over time. Data collected
in such settings is often referred to as panel data or longitudinal data. Incor-
porating full treatment dynamics—where treatment can toggle on and off, and
we need to reason about both long- and short-term effects of actions—will be
deferred to subsequent chapters. Here, instead, we will focus on the simpler
case of event studies where all units start in the control condition and then,
if they ever start treatment, they never stop. Our focus on event studies will
enable a gradual ramp-up in the technical tools required to work with panel
data, and allow us to introduce some widely used econometric methods.

Example 17. In 1990, all but one of 477 municipalities in Argentina had water
services that were either public or owned by non-profit cooperatives. By the
end of the decade, 137 of these municipalities privatized their water systems,
and transferred ownership to private for-profit entities. Galiani, Gertler, and
Schargrodsky [2005] use this panel dataset—and exploit the fact that some
municipalities are observed in the transition from public to private ownership—
to study potential community health effects from privatizing water resources.

Suppose we observe a panel of i = 1, . . . , n units across t = 1, . . . , T time
periods. In each (i, t) pair the is in treatment condition Wit ∈ {0, 1} and
we observe an outcome Yit ∈ R. Our event study assumption requires that
treatment can only ever switch off-to-on, i.e., that Wit ≤ Wit′ for all t ≤ t′.
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There are two treatment patterns that fall under the event study umbrella.

Definition 13.1. In the block-adoption design, there is a shared event
time 1 ≤ H < T such that each unit either starts treatment right after H
or never does. Each unit as an adoption indicator Di ∈ {0, 1} such that
Wit = Di1 ({t > H}).

Definition 13.2. In the staggered-adoption design, each unit either has its
own event time 1 ≤ Hi ≤ T−1 after which it starts treatment, or it never starts
treatment in which case we write Hi =∞. We then have Wit = 1 ({t > Hi}).

As usual, we will define our causal estimands in terms of potential outcomes.
As discussed in Chapter 11, defining potential outcomes for general causal
inferefence problems requires considering the different possible treatment ex-
posures a unit may face. Without any restrictions, a unit who receives a binary
intervention in each of T time periods could experience 2T different treatment
trajectories, and one would then need to either define 2T potential outcomes
for each unit or define an exposure mapping for dimensionality restriction. In
event study designs, however, the off-to-on restriction on treatment assign-
ment restricts the number of possible treatment trajectories and simplifies the
definition of potential outcomes.

In the block-adoption design, a unit’s treatment trajectory is fully defined
by its adoption indicator, and so we can write potential outcomes

Yit(d) for d = 0, 1, (13.1)

with a SUTVA assumption that Yit = Yit(Di). In the staggered-adoption design
there’s a little more flexibility as there are now T possible treatment-start times;
natural potential outcomes are then

Yit(h) for h = 1, 2, . . . , T − 1,∞, (13.2)

with a SUTVA assumption Yit = Yit(Hi). Throughout, we will assume tem-
poral consistency of actions, i.e., that future actions cannot affect past out-
comes.

Assumption 13.1. We assume that potential outcomes do not anticipate
treatment. Specifically, in the block-adoption design case, we assume that

Yit(0) = Yit(1) for t = 1, . . . , H, (13.3)

while in the staggered-adoption design case, we assume that

Yit(h) = Yit(h
′) for t = 1, . . . , min {h, h′} . (13.4)
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Assuming temporal consistency may seem innocuous when presented ab-
stractly, but this is in fact an assumption that may easily fail to hold in some
applications. For example, if we want to study the effect of a policy started
by a country i at time Hi, but some people were able to anticipate this policy
change and adapt their behavior in advance of it, then this non-anticipation
assumption would not hold. The non-anticipation assumption should thus be
carefully assessed before using any of the methods presented in this chapter.

13.1 Difference in differences

Under the block-adoption design, one natural estimand to target is the average
treatment effect on the treated (ATT). Assuming that units i are independently
drawn from a population of units, the average per-time-period effect of receiving
treatment among treated units is

τATT = E

[
1

T −H

T∑
t=H+1

Yit(1)− Yit(0)

]
. (13.5)

How should we go about estimating this quantity?
A first natural estimator to try is the simple difference-in-means com-

parison in the post-event periods,

τ̂DM =

∑
{i:Di=1}

∑T
t=H+1 Yit

|{i : Di = 1}| (T −H)
−
∑
{i:Di=0}

∑T
t=H+1 Yit

|{i : Di = 0}| (T −H)
. (13.6)

This estimator, however, may seem wasteful in that it completely ignores avail-
able data from the pre-event periods. One popular way to leverage pre-event
data available in a panel is using the difference-in-differences (DID) esti-
mator:

τ̂DID =
1

|{i : Di = 1}|
∑

{i:Di=1}

(
1

T −H

T∑
t=H+1

Yit −
1

H

H∑
t=1

Yit

)

− 1

|{i : Di = 0}|
∑

{i:Di=0}

(
1

T −H

T∑
t=H+1

Yit −
1

H

H∑
t=1

Yit

)
.

(13.7)

In words, the DID estimator first uses pre-event data to construct a baseline
outcome that is subtracted from post-event outcomes, and then compares these
post-minus-pre differences across adopters and non-adopters.

As a first sanity check, both the simple difference and difference-in-
differences estimators can immediately be verified to be unbiased when adop-
tion is randomized.
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Proposition 13.1. If adoption is randomized, then E [τ̂DM ] = τ . Furthermore,
if Assumption 13.1 holds, then E [τ̂DID] = τ .

Proof. The first statement follows immediately from Theorem 1.1. The second
statement follows by noting that, under Assumption 13.1, incorporating the
pre-event data into the estimator has a mean-zero effect under randomized
adoption.

In many practical event study applications, however, treatment cannot cred-
ibly be taken to be randomized. Consider, for example, a setting where our
units correspond to the n = 50 states in the United States. Some states choose
to adopt a policy (e.g., to accept Federal subsidies to expand Medicaid cov-
erage) while others don’t. We would like to use difference in differences, but
treatment here is clearly not randomized, and in fact the sampling assump-
tions used to define the ATT in (13.5) don’t really make sense either—and so
Proposition 13.1 does not apply.

Thankfully, it turns out that the difference-in-differences estimator has a
double-robustness-type property whereby it can also be justified via a func-
tional form assumption, namely parallel trends. The parallel trends assump-
tion, made formal in Assumption 13.2, states that all non-adopter potential
outcomes must evolve in parallel (but may start at different levels). When
parallel trends holds, DID can be verified to be on average unbiased for the
following sample average treatment effect on the treated (SATT),

τSATT =

∑
{i:Di=1}

∑T
t=H+1 (Yit(1)− Yit(0))

|{i : Di = 1}| (T −H)
, (13.8)

without requiring any reference to population sampling assumptions.

Assumption 13.2. There exist β2, . . . , βT ∈ R such that, for all units i =
1, . . . , n, never-treated potential outcomes satisfy

E [Yit(0/∞)− Yi1(0/∞)] = βt, t = 2, . . . , T. (13.9)

Recall that we write never-treated potential outcomes as Yit(0) under block
adoption and Yit(∞) under staggered adoption.

Theorem 13.2. In the block-adoption design suppose that some—but not all—
units are exposed to treatment (i.e., have Di = 1). Then, under Assumptions
13.1 and 13.2, E [τ̂DID − τSATT ] = 0.
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Proof. A comparison of (13.7) and (13.8) reveals that, under Assumption 13.1,

τ̂DID − τSATT =
1

|{i : Di = 1}|
∑

{i:Di=1}

(
1

T −H

T∑
t=H+1

Yit(0)− 1

H

H∑
t=1

Yit(0)

)

− 1

|{i : Di = 0}|
∑

{i:Di=0}

(
1

T −H

T∑
t=H+1

Yit(0)− 1

H

H∑
t=1

Yit(0)

)
.

Furthermore, under Assumption 13.2,

E

[
1

T −H

T∑
t=H+1

Yit(0)− 1

H

H∑
t=1

Yit(0)

]
=

1

T −H

T∑
t=H+1

βt −
1

H

H∑
t=2

βt

is the same for each i = 1, . . . , n. The contributions of the βt then cancel out
perfectly.

The parallel trend assumption is a fairly strong functional form assumption,
and so guarantees obtained under this assumption are not generally compara-
ble to guarantees for causal inference available in randomized controlled trials.
They are, however, still valuable in practice, and DID type analyses have been
hugely influential in applied work. For example, in one early and influential
study of the empirical effects of raising the minimum wage on employment,
Card and Krueger [1994] conducted a DID study comparing employment out-
comes across time in New Jersey, which raised its minimum wage during the
study period, to those in Pennsylvania, where the minimum wage remained
fixed. This study identified treatment effects by assuming parallel trends—
and still to date much of the empirical literature on minimum wage effects is
justified by various parallel-trends-type assumptions.

Staggered adoption Under the block-adoption design, all units who ever
get treatment start treatment at the same time. In practice, however, it is
often of interest to also consider the staggered-adoption design where units may
begin treatment at different times. For example, in the setting of Example 17,
municipalities actually privatized water systems at different times throughout
the 1990s: The privatization rate was essentially 0% in 1990, 10% in 1995, and
almost 30% by 1999.

The basic DID formula (13.7) is no longer applicable under staggered adop-
tion. However, the parallel trends assumption (Assumption 13.2) used to justify
it is still a natural assumption to make; and furthermore the SATT from (13.8)
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generalizes to

τSATT =
∑

{i:Di=1}

T∑
t=Hi+1

(Yit(Hi)− Yit(∞))
/ ∑
{i:Di=1}

(T −Hi), (13.10)

which measures the average difference between realized potential outcomes
and never-treated potential outcomes for (i, t) affected by treatment. It is
then natural to ask: How can we estimate τSATT under parallel trends in a
staggered-adoption design? Before presenting a valid approach, we start by
discussing an alluring idea with unintuitive but notable failure modes.

Two-way fixed-effects regression One can readily verify that, under block
adoption, the DID estimator τ̂DID from (13.7) is equivalent to the τ̂ coefficient
obtained by running a two-way fixed-effects linear regression:

Yit ∼ αi + βt +Witτ. (13.11)

This connection is purely algorithmic, and does not rely on well-specification
of the linear model associated with (13.11). Mechanistically, we see that the
unit fixed effects αi absorb any additive unit-level baseline effects, and the time
fixed effects βt absorb any additive time trends.

Now what’s interesting is that, while the original DID construction (13.7)
does not immediately extend to the staggered adoption setting, the two-way
regression (13.11) is something that can immediately be run with under any
treatment adoption design. Unfortunately, however, this simple idea does not
work under the potential outcome specification considered here. Under stag-
gered adoption, the coefficient τ̂ from the two-way regression is in general not
consistent for τSATT ; and, in fact, it’s possible to construct settings where
Yit(Hi) > Yit(∞) for all pairs (i, t) with t > Hi (i.e., starting treatment al-
ways strictly increases outcomes), and yet the regression coefficient τ̂ from the
two-way model converges to a negative limit.

To understand the issue here, it is helpful to return to our discussions from
Chapter 8, where we observed that the output of any linear regression estimator
can always be written as a weighted average of the outcomes, τ̂ =

∑
i,t γitYit,

with the weights γit that encode the regression model. The first two panels
of Figure 13.1 plot the weights resulting from (13.11) for both a block design
(in which case we already have an explicit expression for the weights thanks to
(13.7)), and for a staggered adoption design. The seeming paradox from the
previous paragraph arises because γit can be negative for some treated (i, t)
pairs, and thus large positive values of Yit(Hi) − Yit(∞) for those (i, t) may
push τ̂ to be negative.
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Figure 13.1: Weights implied by the difference in differences estimator under
block adoption, the two-way fixed effects regression with a constant treatment
effect parameter under staggered adoption, and the two-way fixed effects re-
gression with saturated treatment effect parameter under staggered adoption.
We have n = T = 10. In the block design example Wit = 1 ({i ≥ 5, t ≥ 5}),
whereas in the staggered adoption example Wit = 1 ({t ≥ 13− i}). In both
cases, 36 out of 100 cells have active treatment.

Averaged saturated regression There is, however, a simple fix to this
issue, recently proposed by Borusyak, Jaravel, and Spiess [2024]. Instead of
running the simple two-way regression (13.11), one can run fit a saturated two-
way model where each (i, t)-cell under treatment gets its own θit coefficient,

Yit ∼ αi + βt +Witθit. (13.12)

Then, in a second step, one estimates

τ̂BJS =
∑
Wit=1

τ̂it / |{Wit = 1}| . (13.13)

The individual τ̂it coefficients in this regression will in general not be consistent;
however, their aggregate τ̂BJS is able to average out these errors in a way that
recovers consistency.69 The following result verifies that the τ̂BJS in fact has
similar properties under staggered adoption as those established for τ̂DID under
block adoption.

Because τ̂BJS is a linear combination of regression coefficients, it can also
be expressed as a weighted average τ̂BJS =

∑
i,t γitYit; and examining these

69This phenomenon is conceptually related to what we observed in Theorem 2.1, where the
asymptotic variance of the stratified estimator of the ATE did not get worse as we increased
the number of strata.
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weights can yield further insights about the behavior of the estimator. As
seen in the 3rd panel of Figure 13.1, the weights γit show that τ̂BJS does in
fact average information from throughout the panel in a stable-looking way.
Furthermore, we see that the weights for all treated time periods are equal
(and positive).

Theorem 13.3. In the staggered-adoption design, suppose that some—but not
all—units are never treated (i.e., have Hi = ∞). Then, under Assumptions
13.1 and 13.2, E [τ̂BJS − τSATT ] = 0.

Proof. Consider the well-specified linear regression model associated with
(13.12) with homoskedastic errors,

Yit = αi + βt +Witθit + εit, εit
∣∣W ∼ N (0, σ2

)
. (13.14)

Write τ̂BJS =
∑

i,t γitYit, with the weights γit left implicit for now. By the
Gauss-Markov theorem, τ̂BJS is the minimum-variance unbiased estimator for
θ =

∑
i,tWitθit /

∑
i,tWit in this model. Now, one can check that any weighted

estimator will be unbiased for θ here if and only if

T∑
t=1

γit = 0 for all i = 1, . . . , n (so there’s no contamination from αi),

n∑
i=1

γit = 0 for all t = 1, . . . , T (so there’s no contamination from βt),

γit = 1/
∑
i,t

Wit whenever Wit = 1 (to correctly capture the target),

and so by the Gauss-Markov theorem these equality constraints must in par-
ticular be satisfied by the weights underlying τ̂BJS. The assumption that some
but not all units have Hi =∞ is necessary and sufficient for weights with these
properties to exist (and thus for τ̂BJS to be feasible) under staggered adoption.

We now argue that these constraints imply our desired result. (We proceed
under our originally stated assumptions; the normal errors assumption (13.14)
was only used to derive the equality constraints above via the Gauss-Markov
theorem). First, the fact that γit = 1/

∑
i,tWit for all treated units immediately

implies that, under Assumption 13.1,

τ̂BJS − τSATT =
n∑
i=1

T∑
t=1

γitYit(∞).
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Next, because
∑T

t=1 γit = 0 for all i, we can subtract unit-baseline effects from
all terms in the sum above without changing the final result,

τ̂BJS − τSATT =
n∑
i=1

T∑
t=2

γit (Yit(∞)− Yi1(∞)) .

Then, by Assumption 13.2, we get that

E [τ̂BJS − τSATT ] =
n∑
i=1

T∑
t=2

γitβt.

Finally, swapping the order of summation and invoking the fact that
∑n

i=1 γit =
0 for all t verifies the desired claim.

Going beyond Theorem 13.3 to also prove consistency requires having the
number of units n grow so that the random error term in the proof above, i.e.,

n∑
i=1

T∑
t=2

γit (Yit(∞)− Yi0(∞)− βt) (13.15)

concentrates out; we omit details here. Finally, for inference—as with all DID-
type methods—it is recommended to use algorithms that treat all observa-
tions from the same unit as dependent, e.g., the unit-clustered jackknife; see
Bertrand, Duflo, and Mullainathan [2004] for a discussion and examples.

13.2 Synthetic-control methods

Under the block-adoption setting, difference-in-differences provides a simple es-
timator of the SATT provided that non-anticipation and parallel trends hold.
The parallel trends assumption, however, is a fairly strong function form as-
sumption that can often fail to hold in applications. In this section, we will
briefly discuss synthetic-control methods, a class of methods introduced by
Abadie, Diamond, and Hainmueller [2010] that allow extension of difference-
in-differences type methods to settings without parallel trends.

One observable implication of the parallel trends assumption paired with
Assumption 13.1 is that, until the event time H, both adopting (or exposed)
and non-adopting (or control) units should on average evolve in parallel: Sub-
ject to a potential offset parameter α ∈ R, we should have

1

|{Di = 0}|
∑
{Di=0}

Yit ≈ α +
1

|{Di = 1}|
∑
{Di=1}

Yit, t = 1, ..., H. (13.16)

173



Synthetic control methods are focused on settings where we observe that in
fact parallel trends do not hold pre-event, yet would still like to proceed with
an event-study analysis. Generally, synthetic control methods seek to mitigate
bias from failures of parallel trends by carefully reweighting the control units.

Synthetic difference in differences (SDID) [Arkhangelsky et al., 2021]
is a synthetic control method that makes connections to DID explicit—and so
this is the variant of synthetic controls we will discuss here. The main idea of
SDID is to find non-negative weights γi with

∑
Di=0 γi = 1 that restore average

parallel trends in the sense of (13.16),∑
{Di=0}

γiYit ≈ α +
1

|{Di = 1}|
∑
{Di=1}

Yit, t = 1, ..., H, (13.17)

and then estimate the SATT via weighted difference-in-differences

τ̂SDID =
1

|{i : Di = 1}|
∑

{i:Di=1}

(
1

T −H

T∑
t=H+1

Yit −
1

H

H∑
t=1

Yit

)

−
∑

{i:Di=0}

γi

(
1

T −H

T∑
t=H+1

Yit −
1

H

H∑
t=1

Yit

)
.

(13.18)

There are a number of ways one could seek weights that achieve balance as in
(13.17); one simple approach is to choose γi by minimizing squared-error loss:

γ = argminγ′, α

{∥∥∥∥∥∥
∑
{Di=0}

γ′iYi(1:H) −
1

|{Di = 1}|

n∑
{Di=1}

Yi(1:H) − α

∥∥∥∥∥∥
2

2

:

∑
{Di=0}

γ′i = 1, γ′i ≥ 0

}
.

(13.19)

Arkhangelsky et al. [2021] also consider re-weighting pre-event time periods for
improved robustness; however, we omit this step here for simplicity, and refer
to their paper for a full discussion.

To understand the motivation behind SDID note that, just like in the proof
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of Theorem 13.2, under non-anticipation,

τ̂SDID − τSATT

=
1

T −H

T∑
t=H+1

 1

|{i : Di = 1}|
∑

{i:Di=1}

Yit(0)−
∑

{i:Di=0}

γiYit(0)


− 1

H

H∑
t=1

 1

|{i : Di = 1}|
∑

{i:Di=1}

Yit(0)−
∑

{i:Di=0}

γiYit(0)

 .

(13.20)

Now, by the re-weighting (13.17), we know that the summands in the pre-event
term of the right-hand-side expression are all roughly α. If similar balance
also extends post-event to the unexposed potential outcomes, then summands
in the first term above should also all be roughly α, thus making the error
of τ̂SDID. The big question, of course, is in understanding when—and un-
der what conditions—weights obtained via (13.19) will also balance post-event
unexposed potential outcomes. The technical tools for doing so are beyond
the scope of this presentation. We instead refer to Abadie et al. [2010] and
Arkhangelsky et al. [2021] for results of this type; see also Arkhangelsky and
Hirshberg [2023] for recent advances.

Numerical example We illustrate the relationship between basic difference
in differences and the synthetic control approach via a simple numerical exam-
ple. We simulate data for n = 50 units and T = 20 time periods under block
adoption with H = 10. Each unit has IID latent parameters αi and βi that
inform trajectory evolution as follows:

αi, βi ∼ N (0, 1) , Di ∼ Bernoulli
(
1/
(
1 + e1−βi

))
,

Yit(d) = αi +
βi t

10
− d (t−H)+

10
+ εit, εit ∼ N

(
0,

1

102

)
.

(13.21)

This design satisfies non-anticipation as in Assumption 13.1. However, it does
not have random treatment assignment or parallel trends as in Assumption
13.2: Units with large values of βi both have more positive baseline trends,
and are more likely to take up treatment. The DID estimator is thus not
expected to be consistent here.

Figure 13.2 shows results from applying both the DID estimator (13.7) and
the SDID implementation of the synthetic control approach as in (13.18) on
one draw of data following (13.21). The DID estimator is confounded because
exposure Di is correlated with the latent factor βi that also affects trends;
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Figure 13.2: Results from applying DID and SDID on data simulated as in
(13.21). In each case, treatment effects are estimated by measuring divergence
of the average outcomes for the exposed units (in blue) to a comparison curve
given by potentially weighted averages of unexposed outcomes (in red). The
curved arrow denotes the resulting treatment effect estimate.

and in fact we observe that the average outcomes for exposed and unexposed
units do not evolve in parallel even before treatment. In contrast, SDID re-
weights unexposed units with the aim of restoring parallel trends. In our setting
the treatment effect is negative; and SDID correctly recovers the sign of the
treatment effect here whereas DID does not.

13.3 Bibliographic notes

Our presentation of event study designs fits within the tradition a broad litera-
ture on panel data methods in econometrics whose surface we’ve only scratched
here. Arellano [2003] and Wooldridge [2010] provide broad textbook overviews
of the area. Arkhangelsky and Imbens [2023] provide an extensive review of
recent developments in the area. The approach used here to define potential
outcomes and causal estimands is adapted from Athey and Imbens [2022].

The topic of treatment heterogeneity in the context of two-way models
has been the focus of a considerable amount of discussion in recent years;
see de Chaisemartin and D’Haultfoeuille [2018] for an early paper drawing
attention to the phenomenon and Chiu et al. [2023] for a recent discussion and

176



review. Here, we restricted our analysis on estimating τSATT as in (13.10).
However, under staggered adoption, parallel trends allow for identification of a
broader family of cohort-wise treatment effect estimates that may be relevant
in applications [Borusyak, Jaravel, and Spiess, 2024, Callaway and Sant’Anna,
2021, Sun and Abraham, 2021]:

τh,tSATT =
∑

{i:Hit=h}

(Yit(h)− Yit(∞))
/
|{i : Hit = h}| . (13.22)

In particular, when there are no never-treated units as required in Theorem
13.3, then τSATT is not identified under parallel trends, but some cohort-wise
effects will still be identifiable as long as there’s some variation in the treatment
start time.

The synthetic control method was introduced by Abadie and Gardeazabal
[2003] and formalized by Abadie, Diamond, and Hainmueller [2010]. Exten-
sions of synthetic controls with double-differencing structure—including the
SDID method presented here—are discussed in Arkhangelsky et al. [2021], Ben-
Michael, Feller, and Rothstein [2021] and Shen et al. [2023]. Arkhangelsky and
Hirshberg [2023] study large-sample properties of synthetic control estimators
when exposure is non-random and depends on unobservables.

From a formal perspective, synthetic control methods are often studied
under an interactive fixed-effects model, where we posit

Yit = Ai. ·Bt. +Witτ + εit, A ∈ Rn×k, B ∈ RT×k, E
[
εit
∣∣W ] = 0. (13.23)

Here, unlike in the standard two-way specification (13.11), the i-th unit has
a k-dimensional “type” Ai· that interacts with Bt· in the t-th time period.
In the context of this model, showing that synthetic controls work involves
proving that the γ-weighting effectively eliminate bias due to imbalance in the
unobserved types Ai·; see Arkhangelsky et al. [2021] for formal results within
this paradigm.

An alternative approach to estimating τ under the interactive fixed-effects
model involves fitting the full model (13.23)—including the unobserved base-
line term AB′—via low-rank matrix estimation methods. Examples of this ap-
proach include Bai [2009], who use least-squares estimation, and Athey et al.
[2021], who use nuclear-norm penalization. Agarwal et al. [2021], Lei and
Ross [2023] and Xu [2017] consider a setting where a low-rank structure is as-
sumed on the never-treated potential outcomes, but we don’t assume additive
treatment effects as in (13.23). They then use matrix completion methods to
estimate this low-rank structure and impute never-treated potential outcomes
in the post-event periods; the SATT is finally estimated by comparing realized
and imputed outcomes in these periods.
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Chapter 14
Evaluating Dynamic Policies

In the previous chapter, we considered methods for event studies where some
units adopted a treatment (i.e., switched their treatment status from off-to-
on), and we wanted to measure the effect of making this switch. Results from
event studies can be helpful in informing whether other units might also benefit
from adopting the treatment. However, event-study designs—and associated
methods such as difference in differences and synthetic controls—are less helpful
for is in guiding dynamic decision making. Their limitations are perhaps best
understood in the context of examples.

Example 18. During a financial downturn, central banks sometimes use quan-
titative easing to mitigate the risks of a long-term recession. During quanti-
tative easing, the central bank seeks to increase market liquidity by purchas-
ing government bonds and other assets. Some quantitative easing may help
stimulate the economy and avoid a recession; however, too much quantitative
easing—or quantitative easing that lasts for too long—may lead to problems
with excessive inflation [Boehl, Goy, and Strobel, 2024].

Example 19. Antiretroviral therapy (ART) is a crucial drug in caring for
HIV-positive patients. It is understood that HIV reduces CD4 white blood cell
count, and that patients are at risk of contracting AIDS-defined illnesses once
CD4 count is low. The use of ART can help preserve CD4 counts and thus
prevent AIDS, but it is a very intensive form of medication with a number of
side effects. The topic of when to start ART has thus received considerable
attention in the medical literature. Traditional guidelines for treating HIV
recommend beginning ART only once CD4 count fall below a given threshold;
but recent evidence is in favor of starting ART as soon as HIV is diagnosed
[Group, 2015].

It is clear that a successful application of quantitative easing requires ju-
dicious consideration of when to start the intervention, how much liquidity to
provide, and when to stop. However, event-study methods provide very little
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guidance on questions of this type. The parallel trends assumption underly-
ing difference-in-differences methods effectively rules out the possibility that,
during a given crisis, there may be some countries that need quantitative eas-
ing (i.e., they would fall into a recession without intervention) and others that
don’t (i.e., even without intervention they would be OK). Synthetic control
methods could be used to study the effect of ART— or the initial effect of
quantitative easing—but do not readily give guidance as to when to start or
stop the interventions.

This chapter presents a fully flexible, potential-outcome based approach to
modeling causal effects over time that allows for arbitrary treatment assignment
dynamics and carryover effects. Throughout, we will assume that we have
data on i = 1, . . . , n patients, observed at times t = 1, . . . , T . At each time
point, we observe a set of (time-varying) covariates Xit as well as a treatment
assignment Wit ∈ {0, 1}. Finally, once we reach time T , we also observe an
outcome Yi ∈ R. Throughout this chapter, we will take units i to be sampled
IID from a superpopulation.

We model causal effects using the potential outcome specification below
that allows for arbitrary treatment dynamics. Note that this model implicitly
encodes the fact that time-t observables are only affected by actions taken up to
time t, and not future actions, thus generalizing the non-anticipation condition
(Assumption 13.1) used in the event-study setting.

Definition 14.1. A dynamic decision process with time-horizon T is char-
acterized by outcomes time-varying covariates Xit ∈ Xt and outcomes Yi ∈ R,
with potential outcomes that make each observable responsive to all past treat-
ment assignments. For each Xit, we define 2t−1 potential outcomes Xit(w1:(t−1))
such thatXit = Xit(Wi(1:(t−1))), while for the final outcome we have 2T potential
outcomes Yi(w1:T ) such that Yi = Xit(Wi(1:T )).

Next, we need to define an estimand. In the dynamic setting, the number
of potential treatment allocation rules grows exponentially with the horizon
T , and so does the number of questions we can ask. One simple estimand
to consider is the expected outcome under some pre-specified treatment rule
w ∈ {0, 1}T , i.e., V (w) = E [Yi(w)]. Such estimands, however, are often not
relevant to practice as they rule out dynamic decision making. Suppose, for
example, that we’re studying cancer therapy and are asking to estimate V (w)
for the treatment rule that starts chemotherapy one year after cancer diagnosis.
Then, if some patients enter remission through other means before they reach
the one-year mark, evaluating V (w) would still require starting chemotherapy
at this point—even if it doesn’t make clinical sense.

In practice, it is often more relevant evaluate treatment rules that take into
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account time-varying covariates. For example, we might ask about the benefit
of starting chemotherapy one year after diagnosis among patients who have not
yet entered remission, or we might ask about starting quantitative easing at a
point when interest rates have hit 0 but economic activity is still weak. We
can define a number of relevant estimands of this type via the lens of policy
evaluation, in a generalization of our discussion from Chapter 5.1.

Definition 14.2. A dynamic policy is a set of mappings πt : Xt → {0, 1}
that prescribe a treatment πt(Xit) given the current state Xit. The value of
the policy π is

V (π) = E [Yi(π1(Xi1), π2(Xi1, π1(Xi1), Xi2(π1(Xi1)), . . .)] , (14.1)

i.e., it captures the expected reward from choosing treatment according to π
in a dynamic decision process.

The intricate notation in (14.1) highlights the complex causal structure
inherent to dynamic decision-making problems: The treatment decision taken
at time t depends on Xit, which in turn depends on the treatment decision
taken at time t− 1 and thus Xi(t−1), etc., until we get back to the initial state
Xi1. Thankfully, these statistical objects are amenable to tractable analysis
via a recursive, dynamic-programming-style approach.

14.1 Sequential unconfoundedness

In order to estimate the quantities defined above we need to collect data, and
to make assumptions on how the treatment is assigned in the experiment in
order to identify the estimands. Here, we will do so using a sequential uncon-
foundedness (or sequential ignorability) which posits that, at every time point,
treatment is as good as random given the data observed at the time:

{(potential outcomes after time t)} ⊥⊥ Wit

∣∣ {(history up to time t)} . (14.2)

This condition is formalized below. Here, and throughout the rest of this
chapter, we will use the notational short-hand Xi(T+1) := Yi (i.e., the outcome
is the state variable measured after we cross the time-horizon T ) in order to
simplify expressions.

Assumption 14.1. Given a dynamic decision process, we further assume that
our treatment sequence is sequentially unconfounded such that, for all t =
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1, . . . , T ,70[{
Xi(t+1)(Wi(1:(t−1)), w)

}
w=0, 1

⊥⊥ Wit

] ∣∣ {Xi1, Wi1, . . .Wi(t−1), Xit

}
. (14.3)

Remark 14.1. In principle, one might also be interested in a design more di-
rectly comparable to a standard randomized controlled trial where treatment
is fully randomized,

{(all potential outcomes)} ⊥⊥ W1:T . (14.4)

This, however, can again lead to non-sense treatment assignments (e.g., again
in the case of a cancer trial, assigning a patient to chemotherapy after they have
already reached remission), and so the literature on dynamic treatment rules
has mostly focused on methods that work under the more flexible sequential
unconfoundedness setting.

The statistical consequences of sequential unconfoundedness are perhaps
easiest to express in terms of properties of a sequential factorization of the joint
distribution of (Xi1, . . . , XiT , Xi(T+1)) under the policy π, where as discussed
above we write Xi(T+1) = Yi. As usual, we write E [·] and P [·] to denote
expectations and probabilities for the distribution we collect data from. We
can always sequentially factor this distribution as

P [X1, W1, . . . , WT , XT+1] = P [X1]
T∏
t=1

P
[
Wt

∣∣St]P [Xt+1

∣∣Wt, St
]
, (14.5)

where St = {X1, W1, . . . , Wt−1, Xt} denotes all information until the period-t
treatment is chosen. For the purpose of policy evaluation, it is convenient to
also introduce off-policy measures Eπ [·] and Pπ [·] to describe distributions
that would instead arise from assigning treatment according to π as in Def-
inition 14.2. Given this notation, we can concisely write the policy value as
V (π) = Eπ [XT+1]. We can also again sequentially factor the distribution

Pπ [X1, W1, . . . , WT , XT+1]

= Pπ [X1]
T∏
t=1

Pπ
[
Wt

∣∣St]Pπ [Xt+1

∣∣Wt, St
]
.

(14.6)

A key implication of sequential unconfoundedess is that it allows us to simplify
(14.6) by guaranteeing that some terms in the factorization do not depend on
the policy π of interest. The result below follows immediately from (14.3).

70Note that, here, we are only enforcing unconfoundedness for potential outcomes consis-
tent with the trajectory we are already on, i.e., with wi(1:(t−1)) = Wi(1:(t−1)). The other
potential outcomes can no longer be reached, and so their distribution no longer matters for
policy evaluation given that wi(1:(t−1)) = Wi(1:(t−1)).
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n Xi1 Wi1 Xi2 Wi2 Mean Y
2400 0 0 0 0 84
1600 0 0 0 1 84
2400 0 0 1 0 52
9600 0 0 1 1 52
4800 0 1 0 0 76
3200 0 1 0 1 76
1600 0 1 1 0 44
6400 0 1 1 1 44

Table 14.1: A synthetic two-period example reproduced from Hernán and
Robins [2020, Table 20.1].

Proposition 14.1. Under sequential unconfoundedness, terms in the factor-
ization that don’t integrate over Wt don’t depend on the policy π, i.e.,

Pπ [X1] = P [X1] Pπ
[
Xt+1

∣∣St, Wt

]
= P

[
Xt+1

∣∣St, Wt

]
. (14.7)

Treatment-confounder feedback Before introducing methods that work
under sequential unconfoundedness, it is worth highlighting a subtle difficulty
that arises in this setting not present in the basic (single-period) design, namely
treatment-confounder feedback [Robins, 1986]. To see what may go wrong,
consider the following simple example adapted from Hernán and Robins [2020],
modeled after an ART trial with T = 2 time periods. Here, Xit ∈ {0, 1}
denotes CD4 count (1 is low, i.e., bad), and suppose that Xi1 = 0 for everyone
(no one enters the trial very sick), and Xi1 is randomized with probability 0.5
of receiving treatment. Then, at time period 2, we observe Xi2 and assign
treatment Xi2 = 1 with probability 0.4 if Xi2 = 0 and with probability 0.8
if Xi2 = 1. In the end, we collect a health outcome Y . This is a sequential
randomized experiment.

We observe data as in Table 14.1, wherethe last column is the mean outcome
for everyone in that row. Our goal is to estimate τ = E [Y (1)− Y (0)], i.e., the
difference between the always treat and never treat rules. How should we do
this? As a preliminary, it’s helpful to note that the treatment obviously does
nothing. In the first time period,

E
[
Yi
∣∣Wi1 = 0

]
= E

[
Yi
∣∣Wi1 = 1

]
= 60,

and this is obviously a causal quantity (since Wi1 was randomized). Moreover,
in the second time period we see by inspection that

E
[
Yi
∣∣Wi2 = 0, Wi1 = w1, Xi2 = x

]
= E

[
Yi
∣∣Wi2 = 1, Wi1 = w1, Xi2 = x

]
,
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Wi1 = 0 Wi1 = 1
stable Xi2 = 0 Xi2 = 0

responder Xi2 = 1 Xi2 = 0
acute Xi2 = 1 Xi2 = 1

Table 14.2: Responder types in the setting of Table 14.1.

for all values of w1 and x, and again the treatment does nothing.
However, when targeting the total effect of always treatment vs. never treat-

ment, some simple estimation strategies that served us well in the non-dynamic
setting do not get the right answer. In particular, here are some strategies that
do not get the right answer:

• Ignore adaptive sampling, and use

τ̂ = Ê
[
Y
∣∣W = 1

]
− Ê

[
Y
∣∣W = 0

]
=

6400× 44 + 3200× 76

6400 + 3200
− 2400× 52 + 2400× 84

2400 + 2400

= 54.7− 68 = −13.3.

• Stratify by CD4 count at time 2, to control for adaptive sampling:

τ̂0 = E
[
Y
∣∣W = 1, Xi2 = 0

]
− E

[
Y
∣∣W = 0, Xi2 = 0

]
= 76− 84 = −8

τ̂1 = E
[
Y
∣∣W = 1, Xi2 = 1

]
− E

[
Y
∣∣W = 0, Xi2 = 1

]
= 44− 52 = −8

τ̂ =
(3200 + 2400)τ̂0 + (6400 + 2400)τ̂1

3200 + 2400 + 6400 + 2400
= −8.

The problem with the first strategy is obvious (we need to correct for biased
sampling). But the problem with the second strategy is more subtle. We know
via sequantial randomization that

Yi(· · · ) ⊥⊥ Wi2

∣∣Xi2,

and this seems to justify stratification. But what we’d actually need for strat-
ification is:

Yi(· · · ) ⊥⊥ (Wi1, Wi2)
∣∣Xi2,

and this is not true by design.
To see what could go wrong, imagine that there are 3 types of people

(stable, responder, acute), and tabulate their time-2 CD4 values as in Table
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14.2. These types—often called principal strata—are are unobservable but can
still provide insights.71 For example:

• E
[
Y
∣∣W = 1, Xi2 = 0

]
is an average over stable or responder patients,

whereas E
[
Y
∣∣W = 0, Xi2 = 0

]
is simply an average over stable patients.

So the difference τ̂0 is not estimating a proper causal quantity.

• E
[
Y
∣∣W = 1, Xi2 = 1

]
is an average over acute patients, whereas in con-

trast E
[
Y
∣∣W = 0, Xi2 = 1

]
is an average over responder or acute pa-

tients. So the difference τ̂1 is not estimating a proper causal quantity.

In other words, in sequentially randomized trials, simple stratification estima-
tors do not successfully control for confounding.

Sequential inverse-propensity weighting Since stratification doesn’t
work, we now move to study a family of approaches that do. Here, we fo-
cus on estimating the value of a policy V (π) as in (14.1); note that evaluating
a fixed treatment sequence is a special case of this strategy. To this end, it’s
helpful to define some more notation: Writing St for the information available
at time t as before, we define the value function72

Vπ, t(St) = Eπ
[
Y
∣∣St] (14.8)

that measures the expected reward we’d get if we were to start following π
given our current state as captured by St.

This notation lets us concisely express a helpful principle behind fruitful
estimation of V (π): By the chain rule, we see that

Eπ
[
Vπ, t+1(St+1)

∣∣St] = Eπ
[
Eπ
[
Y
∣∣St+1

] ∣∣St]
= Eπ

[
Y
∣∣St] = Vπ,t(St).

(14.9)

The implication is that, given a good estimate of Vπ,t+1, all we need to be able
to do is to get a good estimate of Vπ,t; then we can recurse our way backwards
to V (π). The question is then how we choose to act on this insight.

One simple way to do so is via an inverse-propensity weighting (IPW) con-
struction. If we had access to Vπ, t+1(Si(t+1)) and many samples with Sit = st,
then applying the basic IPW construction from Chapter 2 under (14.3) would
suggest using

V̂π, t(st) =
1

|{i : Sit = st}|
∑

{i:Sit=st}

1 ({Wit = π(st)})
P
[
Wit = π(st)

∣∣Sit = st
]Vπ, t+1(Si(t+1)).

71There is a close conceptual connection between these principal strata and the compliance
types for IV analyses discussed in Chapter 10.1.

72Given this notation, the policy value itself can also be written as Vπ, 0 = V (π).
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A recursive application of this principle results in the IPW estimator of the
policy value,

V̂IPW (π) =
1

n

n∑
i=1

γiT (π)Yi,

γit(π) = γi(t−1)(π)
1 ({Wt = πt(St)})
P
[
Wt = πt(St)

∣∣St] ,
(14.10)

where γi0(π) = 1. This estimator averages outcomes whose treatment trajec-
tory exactly matches π, while applying an IPW correction for selection effects
due to measured (time-varying) confounders. We show below that the IPW
estimator is unbiased if we know the inverse-propensity weights γiT exactly,
and give an expression for its asymptotic variance.

Theorem 14.2. Consider a dynamic decision process as in Definition 14.1
with data collected under sequential unconfoundedness as in Assumption 14.1.
Suppose furthermore that we seek to evaluate a policy π for which strong overlap
holds, i.e.,

P
[
Wt = πt(St)

∣∣St] ≥a.s. η, (14.11)

and that our outcomes are almost surely bounded, |Y | ≤a.s. M for some M <
∞. Then, the IPW estimator from (14.10) is unbiased with and asymptotically
normal sampling distribution,73

E
[
V̂IPW (π)

]
= V (π),

√
n
(
V̂IPW (π)− V (π)

)
⇒ N

(
0, σ2

IPW

)
σ2
IPW = Eπ

[
Y 2
/ T∏

t=1

P
[
Wt = πt(St)

∣∣St]]− V 2(π).
(14.12)

Proof. We verify unbiasedness via backwards induction, starting from t = T ,
and argue that

Vπ, t(St) = E
[
γT (π)

γt−1(π)
Y
∣∣St] (14.13)

for all t = 0, . . . , T , where we use S0 = ∅ and γ−1(π) = γ0(π) = 1. The base
case, with t = T , corresponds exactly to the unbiasedness result in Theorem
2.2, while the final step with t = 0 corresponds to our desired claim. For the

73Unlike in the rest of the book, we here use σ2 instead of V ∗ for the asymptotic variance
as we follow the standard convention in the reinforcement learning literature of writing the
value function as V .
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inductive step, suppose that (14.13) holds for t+ 1. Then, we can verify that

E
[
γT (π)

γt−1(π)
Y
∣∣St] = E

[
γt(π)

γt−1(π)
E
[
γT (π)

γt(π)
Y
∣∣St+1

] ∣∣St]
= E

[
1 ({Wt = πt(St)})
P
[
Wt = πt(St)

∣∣St]Vπ, t+1(St+1)

]

= E

[
1 ({Wt = πt(St)})
P
[
Wt = πt(St)

∣∣St]Eπ [YT ∣∣St+1

]]
= Eπ

[
Eπ
[
YT
∣∣St]] = Vπ, t(St),

where the first equality follows because γt(π)/γt−1(π) is St-measurable, the
second follows by invoking the inductive hypothesis and by definition of
γt(π)/γt−1(π), the fourth equality follows by sequential unconfoundedness, and
the third and last are just (14.9).

Given unbiasedness and IID sampling of units, the central limit theorem
immediately follows with

σ2
IPW = E

[
γ2
T (π)Y 2

]
− V 2(π),

and it only remains to derive an explicit expression for the 2nd moment term
above. Now, by repeating the same IPW argument as used above,

E
[
γ2
T (π)Y 2

]
= Eπ

[
γT (π)Y 2

]
.

Under the off-policy measure Eπ [·], we always have Wt = πt(St), and so

γT (π) = 1
/ T∏

t=1

P
[
Wt = πt(St)

∣∣St]
almost surely, thus providing the expression claimed.

Remark 14.2. As discussed in Chapter 12, we can often improve the asymptotic
precision of IPW via self-normalization:

V̂SIPW (π) =
n∑
i=1

γiT (π)Yi

/ n∑
i=1

γiT (π). (14.14)

Under the conditions of Theorem 14.2,

√
n
(
V̂SIPW (π)− V (π)

)
⇒ N

(
0, σ2

SIPW

)
σ2
SIPW = Eπ

[
(Y − V (π))2

/ T∏
t=1

P
[
Wt = πt(St)

∣∣St]] . (14.15)
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This result can be established by following the same proof strategy as in, e.g.,
Theorem 12.3. The change in precision from self-normalization is

σ2
IPW − σ2

SIPW =

Eπ

( T∏
t=1

P
[
Wt = πt(St)

∣∣St])−1
− 1

 V 2(π)

+ 2 Covπ

Y, ( T∏
t=1

P
[
Wt = πt(St)

∣∣St])−1
 .

(14.16)

The first summand is always positive (and often large); however, the second
summand can be negative—and could in principle be negative enough to make
self-normalized IPW less precise than the basic IPW estimator.

14.2 Doubly robust estimation

Like in the single-period case discussed in Chapter 3, it is possible to improve
the precision and robustness of IPW by augmenting it with a regression adjust-
ment. Here, we show how to construct an augmented estimator for dynamic
treatment rules, and verify that the resulting estimator is has a strong double
robustness property: It can trade off accuracy of the regression and propensity-
score models and achieve the parametric 1/

√
n-rate of convergence even if input

non-parametric regressions converge at slower rates.

Backwards regression adjustment Like in Chapter 3, our doubly robust
construction starts by using sequential unconfoundedness to motivate an al-
ternative, regression-based approach to estimating the value of a policy π. By
combining sequential unconfoundedness (and in particular its implication high-
lighted in Proposition 14.1) with (14.9), we see that

Vπ, t(s) = E
[
Vπ, t+1(St+1)

∣∣St = s, Wt = πt(s)
]
. (14.17)

Thus, if we know Vπ, t+1(·) or have a reasonably accurate estimate of it, we can
estimate Vπ, t(·) via non-parametric regression with Vπ, t+1(·) as the outcome.

This structure suggests the following backward regression approach to es-
timating the policy value:

• First, using samples i that exactly follow the target policy, i.e., withWit =
π(Sit) for all t = 1, . . . , T , learn V̂π, T (·) via non-parametric regression
Yi ∼ Vπ, T (SiT ).

187



• Next, iteratively for t = T − 1, T − 2, . . . , 1:

– Using samples i that exactly follow the target policy up to time t,
i.e., with Wit′ = π(Sit′) for all t′ = 1, . . . , t, learn V̂π, t(·) via non-
parametric regression V̂π, t+1(Si(t+1)) ∼ Vπ, t(Sit).

• Finally, form the regression estimator for the value of π

V̂REG(π) =
1

n

n∑
i=1

V̂π, 1(Si1). (14.18)

This backwards-regression approach can be implemented via generic machine
learning. However, tailored models may also be helpful; for example, structural
nested mean models [Robins, 1994] are designed to avoid spurious detection of
causal effects under a null where the intervention has no effect.

A regression-augmented estimator Where there’s an IPW and a regres-
sion based estimator, there’s going to be a doubly robust estimator also. In
the the last step of the backward-regression estimator (14.17), we averaged
time-1 value-function estimates V̂π, 1(X1) to obtain V̂REG(π). Now, given the
backward-regression construction, it’s likely we trust the time-2 value function
estimates V̂π, 2 a little more than the time-1 estimates; and in this case we may
consider using the basic augmented IPW (AIPW) construction from Chapter
3 to leverage these V̂π, 2 estimates for improved precision:

V̂ (π) =
1

n

n∑
i=1

(
V̂π, 1(Xi1) + γi1(π)

(
V̂π, 2(Xi1, Wi1, Xi2)− V̂π, 1(Xi1)

))
.

Qualitatively, the idea here is that on the event where Wi1 matches π in the
first step, we can use V̂π, 2 to debias V̂π, 1; here, the γit are the inverse-propensity
weights as in (14.10).

Then next natural question, of course, is why not debias V̂π, 2 using V̂π, 3
when Wi2 also matches π in the second step? And once we do so, why not
proceed until the end of the time-horizon when we can observe the realized
outcome Y ? This recursive construction in fact works, and yields a natural
generalization of the AIPW estimator of Robins, Rotnitzky, and Zhao [1994]
discussed in Chapter 3 to the dynamic setting:

V̂AIPW (π) =
1

n

n∑
i=1

(
V̂π, 1(Xi1)

+
T∑
t=1

γ̂it(π)
(
V̂π, t+1(Si(t+1))− V̂π, t(Sit)

))
,

(14.19)
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where we used a notational convention that V̂π, T+1(Si(T+1)) = Yi since by time
T + 1 the final outcome has been revealed.

Below, we analyze large-sample properties of this estimator under the dou-
ble machine learning framework, and see that it preserves the strong double
robustness property discussed in Chapter 3: The estimator has good properties
if the product of the mean-squared errors for the γ̂t(π) model and for the V̂π, t
decay fast enough. For simplicity, we assume that that the estimators for these
nuisance components are obtained using independent training data; however,
as in Chapter 3, the argument generalizes immediately to K-fold cross-fitting
at the cost of some extra notation.

Theorem 14.3. Under the conditions of Theorem 14.2, suppose furthermore
that we estimate the nuisance components in (14.19) on independent training
data such that, for all t = 1, . . . , T ,74

E
[
(γ̂it(π)− γit(π))2] = oP

(
n−2αγ

)
,

E
[(
V̂π, t(Sit)− Vπ, t(Sit)

)2
]

= oP
(
n−2αV

) (14.20)

for constants αγ, αV ≥ 0 with αγ + αV ≥ 1/2. Then,

√
n
(
V̂AIPW (π)− V (π)

)
⇒ N

(
0, σ2

AIPW

)
σ2
AIPW = Var

[
Eπ
[
Y
∣∣X1

]]
+

T∑
t=1

Eπ

[
Varπ

[
Eπ
[
Y
∣∣St+1

] ∣∣St] / t∏
t′=1

P
[
Wt′ = πt′(St′)

∣∣St′]] .
(14.21)

Proof. As in the proof of the single time-step AIPW result in Chapter 3, we
first consider properties of an oracle estimator with correct nuisance estimates,
and then show asymptotic equivalence of the feasible and oracle AIPW esti-
mators under rate-of-convergence assumptions and with exogenous nuisance
estimators. In our setting, the oracle is

V̂ ∗AIPW (π) =
1

n

n∑
i=1

(
Vπ, 1(Xi1)

+
T∑
t=1

γit(π)
(
Vπ, t+1(Si(t+1))− Vπ, t(Sit)

))
,

(14.22)

74The expectations below are taken over the test data; and the requirement is the training
produces on separate data achieve, with high probability, estimates with good test-set mean-
squared error.
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with Vπ, t(Si(T+1)) = Yi. Now, by (14.9) we know that Eπ
[
Vπ, t+1(Si(t+1))

∣∣Sit] =
Vπ, t(Sit). By sequential unconfoundedness (and in particularly the property
highlighted in Proposition 14.1), this implies that under the data-collection
measure,

E
[
Vπ, t+1(Si(t+1))

∣∣Sit, Wit = π(Sit)
]

= Vπ, t(Sit). (14.23)

Furthermore, recalling that γit(π) is a function of Sit and Wit, and γit(π) 6= 0
only when Wit = π(Sit), we see that

E
[
γit(π)

(
Vπ, t+1(Si(t+1))− Vπ, t(Sit)

) ∣∣Sit] = 0, (14.24)

i.e., the terms γit(π)
(
Vπ, t+1(Si(t+1))− Vπ, t(Sit)

)
for a given unit i form a mar-

tingale difference sequence. Thus

Var

[
Vπ, 1(Xi1) +

T∑
t=1

γit(π)
(
Vπ, t+1(Si(t+1))− Vπ, t(Sit)

)]

= Var [Vπ, 1(Xi1)] +
T∑
t=1

Var
[
γit(π)

(
Vπ, t+1(Si(t+1))− Vπ, t(Sit)

)]
.

One recovers the variance expression in (14.21) by moving to the off-policy
measure as in the proof of Theorem 14.2 and then plugging in the definition of
the value function from (14.8). Finally, given IID sampling of units i = 1, . . . , n
our strong overlap and boundedness assumptions, the central limit theorem
14.21 follows immediately for the oracle estimator (14.22).

Now, to show asymptotic equivalence of the feasible and oracle AIPW es-
timators, we introduce some convenient short-hand. We write the time-t value
function updates as

εit := Vπ, t+1(Si(t+1))− Vπ, t(Sit)

for t = 0, . . . , T , and the value function errors as

δ̂it = V̂π, t(Sit)− Vπ, t(Sit)

for t = 1, . . . , T . We also drop the explicit π dependence in γit(π). Given this
notation, we have

V̂ ∗AIPW (π)− V (π) =
1

n

n∑
i=1

T∑
t=0

γitεit

V̂AIPW (π)− V (π) =
1

n

n∑
i=1

T∑
t=0

γ̂it

(
εit + δ̂i(t+1) − δ̂it

)
,
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where we have δ̂i0 = 0 (because V̂0, π doesn’t appear in the construction of
V̂AIPW (π) so without loss of generality we make no errors there) and δ̂i(T+1) = 0
(because V̂π, T+1(Si(T+1)) = Yi). Thus,

V̂AIPW (π)− V̂ ∗AIPW (π) =
1

n

n∑
i=1

T∑
t=0

(γ̂it − γit) εit

+
1

n

n∑
i=1

T∑
t=0

γit

(
δ̂i(t+1) − δ̂it

)
+

1

n

n∑
i=1

T∑
t=0

(γ̂it − γit)
(
δ̂i(t+1) − δ̂it

)
.

We now bound each term separately as in the proof of Theorem 3.2. The first
term is a martingale in t by the same argument as used above, and so by IID
sampling of units

Var

[
1

n

n∑
i=1

T∑
t=0

(γ̂it − γit) εit

]
=

1

n

T∑
t=1

E
[
(γ̂it − γit)2 Varπ

[
εit
∣∣Sit]]

= O

(
1

n

T∑
t=1

E
[
(γ̂it − γit)2]) ,

and so by (14.20) 1
n

∑n
i=1

∑T
t=0 (γ̂it − γit) εit = op (1/

√
n). For the second term,

we can rearrange the sum:

1

n

n∑
i=1

T∑
t=0

γit

(
δ̂i(t+1) − δ̂it

)
=

1

n

n∑
i=1

(
T∑
t=1

(
γi(t−1) − γit

)
δ̂it + γiT δ̂i(T+1) − γi0δ̂i0

)
,

where the last two terms can be ignored because δ̂i0 = δ̂i(T+1) = 0. Given the
definitions of γit and δ̂it, this term can be further simplified as

. . . =
1

n

n∑
i=1

T∑
t=1

γi(t−1)

(
1− 1 ({Wit = π(Sit)})

P
[
Wit = π(Sit)

∣∣Sit]
)(

V̂π, t(Sit)− Vπ, t(Sit)
)
.

By sequential unconfoundedness, the inner sum is again a martingale in t, so

E

( 1

n

n∑
i=1

T∑
t=0

γit

(
δ̂i(t+1) − δ̂it

))2


=
1

n

T∑
t=1

E

[
γ2
i(t−1)

1− P
[
Wit = π(Sit)

∣∣Sit]
P
[
Wit = π(Sit)

∣∣Sit]
(
V̂π, t(Sit)− Vπ, t(Sit)

)2
]

=
1

n

T∑
t=1

η1−2tE
[(
V̂π, t(Sit)− Vπ, t(Sit)

)2
]

= op(1/n)
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by (14.20), and the term itself is again op(1/
√
n). Finally, for the 3rd term, we

can swap the order of summation and apply Cauchy-Schwarz:

1

n

n∑
i=1

T∑
t=0

(γ̂it − γit)
(
δ̂i(t+1) − δ̂it

)

≤
T∑
t=0

√√√√ 1

n

n∑
i=1

(γ̂it − γit)2

√√√√ 1

n

n∑
i=1

(
δ̂i(t+1) − δ̂it

)2

= oP
(
n−(αγ+αV )

)
.

This establishes that

V̂AIPW (π)− V̂ ∗AIPW (π) = oP
(
1/
√
n
)
,

thus concluding the proof.

14.3 Bibliographic notes

The approach evaluating dynamic decision rules presented here, i.e., with
nested potential outcomes and with identification obtained via under sequential
unconfoundedness, goes back to Robins [1986]; see Richardson and Rotnitzky
[2014] for a survey of this line of work, and Hernán and Robins [2020] for a
textbook treatment. One of the most widely used algorithms from this line of
work, called marginal structural modeling, involves estimating the value of a
parametrized policy class via inverse-propensity weighted linear regression [see
Robins, 1999, for an overview]. The AIPW estimator (14.19) is discussed in
Jiang and Li [2016], Thomas and Brunskill [2016] and Zhang, Tsiatis, Laber,
and Davidian [2013].

Causal inference in dynamic settings is a broad topic, a comprehensive
discussion of which would go beyond the scope of this book. Van der Laan
and Robins [2003] and Tsiatis [2006] offer comprehensive textbook treatments,
including discussions of efficiency. In particular, one consideration that’s im-
portant in many applications is the problem of censoring: Some units may
leave the study before we get to observe the final outcome, and the methods
discussed in this chapter need to be extended to accommodate such censoring
(see Exercise 14 in Chapter 16 for one example of a result with censoring). An-
other interesting direction is the extension of our discussion on policy learning
from Chapter 5 to the dynamic setting [Robins, 2004]. Finally, our discussion of
dynamic policy evaluation is closely related to the literature on reinforcement
learning; see Sutton and Barto [2018] for a textbook treatment.
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Chapter 15
Markov Decision Processes

In the previous chapter, we considered dynamic treatment rules in a general set-
ting without modeling assumptions on how treatment effects play out over time,
and introduced a set of methods for policy evaluation that only required sequen-
tial unconfoundedness for identification. The flexibility of these methods, how-
ever, comes at a cost of precision. The discussed inverse-propensity weighted
method can only leverage trajectories whose assigned treatment matches the
policy prescription in all T time periods and involves weights whose magni-
tude generally scales exponentially in the time horizon T ; and the augmented
method faces a similar “curse of horizon”.

Here, we will study how judicious use of modeling assumptions can help
mitigate this curse of horizon. The key insight is that, in many applications,
any intervention we take is relevant for some amount of time, but its effect
eventually washes out. And, if we believe that actions taken long ago are
no longer relevant, then one may hope that it’s possible to meaningfully use
trajectories for policy evaluation even if they deviated from the target policy
at some point in the far past. The following example has this structure.

Example 20. Many ride-sharing platforms implement some kind of surge pric-
ing mechanism, which involves temporarily raising prices in areas experiencing
localized demand spikes [Castillo, Knoepfle, and Weyl, 2024]. Activating surge
pricing at a given location allows the platform to rapidly shed demand at that
location, and also to increase supply by encouraging idle drivers to relocate to
the area with surge pricing. This helps the market rebalance itself, and avoids a
situation where the platform is unable to fulfill ride requests at posted prices.
In order to choose between algorithms and/or calibrate the parameters of a
given algorithm, platforms often run experiments that toggle between surge
algorithms in a given market.75

75When a platform runs a number of independent markets, they can also run experiments
by randomly assigning treatment across markets. However, the effective sample size (i.e.,
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How should we analyze data from an experiment as described in the above
example? This problem clearly involves complex treatment dynamics, and so
event-study methods are not applicable. On the other hand, while surge pricing
algorithms obviously have intricate short-term effects (e.g., by moving the dis-
tribution of drivers in the system), one should expect any such effects wash out
(after temporarily suppressed demand has been able to re-emerge and drivers
have a chance to return to their usual configuration). This suggests we should
be able to develop analytic techniques that can extract meaningful insights
from a long-horizon (say, multi-week) surge pricing experiment without suffer-
ing the curse-of-horizon phenomenon incurred my methods from the previous
chapter.

The question, then, is how to specify a flexible and credible model that
enables this type of forgetting. Here, we will do so by assuming Markovian
structure. We assume that we observe a single unit over a long trajectory
t = 1, 2, . . . , T , with a state variable Xt, actions Wt and outcomes Yt. Our
Markovian assumption, formalized below, is that at time t, any effect of past
actions on future observables is mediated by the current state Xt. Such Marko-
vian structure induces forgetting—and enables consistent policy evaluation
from a single trajectory—as long as the state variable Xt has relevant “mix-
ing” properites that prevent it from holding information about past treatment
assignments for excessively long times.

Definition 15.1. A Markov decision process (MDP) is characterized by
a series of state-transition distribution Pt such that, for all t,

Xt+1, Yt ∼ Pt (Xt, Wt) (15.1)

conditionally on all information available up to time t, i.e., conditionally on
X1, W1, Y1, X2, . . . , Xt, Wt.

In the context of the ride-sharing example, one could define Xt as the
current number of drivers in each neighborhood, and Wt as whether an exper-
imental surge algorithm is currently active downtown. Then, our Markovian
assumption would require positing that the effect of any past surge-pricing
decisions is mediated by the current driver distribution, while a mixing as-
sumption will essentially imply that, if we return to our default algorithm for
a long enough period of time, drivers return to their usual patterns.

the number of treatment randomizations) with this strategy is the number of markets, and
so this approach is usually only attractive when it’s possible to experiment across a large
number of markets.
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15.1 The long-run average value

We start our study of MDPs by revisiting the setting of policy evaluation
under sequential randomization, and see how Markovian modeling assumption
can enable precision improvements relative to methods from the previous chap-
ter. We work under the long-horizon, T → ∞ seek to estimate the long-run
average value produced under a time-homogeneous target policy

V (π) = lim
T→∞

Eπ

[
1

T

T∑
t=1

Yt

]
, π : X → {0, 1} , (15.2)

under an assumption that this limit exists. We assumption that we have data
collected under a sequentially unconfounded design,

Wt ∼ e(Xt), e : X → (0, 1), (15.3)

conditionally on all past information, and we will assume that e(x) is known.
We also make the following regularity assumptions on the MDP throughout:

• The MDP is time homogeneous, i.e., the state-transition distributions Pt
from Definition 15.1 satisfy Pt = P for all t.

• The state-variables Xt observed in our study, i.e., with treatment gener-
ated following (15.3), form an irreducible, aperiodic Markov chain with
stationary distribution F . The process is initialized from this stationary
distribution, i.e., X1 ∼ F .

• The Xt observed in our study satisfy the ρ-mixing condition [see Bradley,
2005, for a survey of mixing conditions and their relationships],

∞∑
t=1

sup
f, g∈L2(F )

|Corr(f(X1), g(Xt))| <∞. (15.4)

• The state-variables Xt generated from the MDP under our target policy
π converge weakly to a stationary distribution Fπ, and also satisfies the
ρ-mixing condition (15.4).

• The distributions F and Fπ are equivalent measures.

Notice that, writing µπ(x) = EP
[
Yt
∣∣Xt = x, Wt = π(x)

]
, the second-to-

last assumption implies that our target exists and can be expressed as
V (π) = EFπ [µπ(X)].
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Given this setup, we can write down a doubly robust estimator for V (π) in
terms of the excess reward function

Qπ(x) = lim
T→∞

Eπ

[
T∑
t=1

(Yt − V (π))
∣∣X1 = x

]
, (15.5)

which measures the size of the expected (non-scaled) excess reward under π
from starting from a specific state x rather than from a random draw from Fπ,
and the stationary distribution ratio

ωπ(x) = dFπ(x) / dF (x). (15.6)

Given estimates of these two quantities, and assuming that e(·) is known (as
it would be in a sequentially randomized experiment), then the estimator

V̂DR(π) =

∑T−1
t=1

(
Yt + Q̂π(Xt+1)− Q̂π(Xt)

)
ω̂π(Xt)

1({Wt=π(Xt)})
eπ(Xt)∑T−1

t=1 ω̂π(Xt)
1({Wt=π(Xt)})

eπ(Xt)

(15.7)

is consistent for V (π) and (strongly) doubly robust in the sense discussed in
Chapter 3. Above, we have used the notational short-hand eπ(x) = π(x)e(x) +
(1− π(x))(1− e(x)) to denote the conditional probability of following π(·).

The remainder of this section will be devoted to proving this result. For
simplicity, we will not rely on cross-fitting, and will instead assume that the es-
timates ω̂π(·) and Q̂π(·) have been obtained on a separate training set; however,
we do note that given appropriate mixing assumptions a cross-fitting argument
across long, consecutive segments of the time series (Xt, Yt, Wt) would also be
possible. Finally, as in the rest of the book, we will defer to the statistical learn-
ing literature for methods on estimating the functions ω̂π(·) and Q̂π(·); see Liao
et al. [2022] and Uehara, Huang, and Jiang [2020] for recent proposals.

We start establishing two results motivating the form of the estimator
(15.7). Note that these two results together already imply weak double ro-
bustness of the estimator.

Lemma 15.1. Under our stated assumptions and with VarFπ [µπ(X)] <∞, the
excess reward function Qπ(Xt) is absolutely integrable under Fπ, almost surely
finite under Xt ∼ F , and satisfies the Bellman conditions

Eπ
[
Yt +Qπ(Xt+1)

∣∣Xt

]
−Qπ(Xt) = V (π),

E0

[
1 ({Wt = π(Xt)})

eπ(Xt)
(Yt +Qπ(Xt+1))

∣∣Xt

]
−Qπ(Xt) = V (π),

(15.8)

almost surely.
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Proof. Given time-homogeneity of our system, an application of the chain rule
to (15.5) implies that

Eπ
[
Qπ(Xt+1)

∣∣Xt = x
]

= lim
T→∞

Eπ

[
T∑
t=2

(Yt − V (π))
∣∣X1 = x

]
.

The first Bellman equation then follows immediately from basic algebraic
manipulations—provided we can show that Qπ(Xt) is almost surely finite under
Xt ∼ F . In order to verify this, we will show below that

∞∑
t=1

EX1∼Fπ
[∣∣Eπ [Yt − V (π)

∣∣X1

]∣∣] <∞; (15.9)

it then follows from Fubini’s theorem thatQπ(Xt) is absolutely integrable under
Fπ, EX1∼Fπ [|Qπ(X1)|] < ∞. This also implies that Qπ(Xt) is almost surely
finite under Xt ∼ F since F and Fπ are equivalent measures. Meanwhile, the
second Bellman equation follows from the first by the standard IPW argument
under sequential unconfoundedness as used in the proof of Theorem 14.2.

We now turn to verifying (15.9) under our ρ-mixing assumption. Write

ρtπ = sup
f, g∈L2(Fπ)

|Corrπ(f(X1), g(Xt))| ,

and recall that our assumption is that these
∑∞

t=1 ρ
t
π < ∞. Now, by applying

Jensen’s inequality

Eπ
[∣∣Eπ [Yt − V (π)

∣∣X1

]∣∣] ≤ Eπ
[
Eπ
[
Yt − V (π)

∣∣X1

]2] 1
2

= Varπ
[
Eπ
[
Yt
∣∣X1

]] 1
2 ,

where we have left the fact that X1 ∼ Fπ implicit. Furthermore,

Varπ
[
Eπ
[
Yt
∣∣X1

]]
= Covπ

[
µπ(Xt), Eπ

[
Yt
∣∣X1

]]
= Corrπ

(
µπ(Xt), Eπ

[
Yt
∣∣X1

])
× Varπ [µπ(Xt)]

1/2 Varπ
[
Eπ
[
Yt
∣∣X1

]]1/2
,

and so
Varπ

[
Eπ
[
Yt
∣∣X1

]]1/2 ≤ ρtπ VarFπ [µπ(X)]1/2 .

Putting everything together, we get

∞∑
t=1

EX1∼Fπ
[∣∣Eπ [Yt − V (π)

∣∣X1

]∣∣] ≤ VarFπ [µπ(X)]1/2
∞∑
t=1

ρtπ <∞,

as claimed.
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Lemma 15.2. Under our stated assumptions, for any time t and any measur-
able function h(X),

E0

[
ωπ (Xt)h (Xt+1)

1 ({Wt = π(Xt)})
eπ(Xt)

]
= E0 [ωπ (Xt)h (Xt)] , (15.10)

provided all stated expectations exist and are finite.

Proof. Starting with the right-hand side expression, we can invoke stationarity
as well as a change-of-measure argument to check that

E0 [ωπ (Xt)h (Xt)] = EF [ωπ (X)h (X)] = EFπ [h (X)] .

Meanwhile, for the left-hand-side, we the standard IPW argument under se-
quential unconfoundedness implies that

E0

[
h (Xt+1)

1 ({Wt = π(Xt)})
eπ(Xt)

∣∣Xt

]
= Eπ

[
h (Xt+1)

∣∣Xt

]
,

and so an application of the chain rule yields

E0

[
ωπ (Xt)h (Xt+1)

1 ({Wt = π(Xt)})
eπ(Xt)

]
= E0

[
ωπ (Xt)E0

[
h (Xt+1)

1 ({Wt = π(Xt)})
eπ(Xt)

∣∣Xt

]]
= E0

[
ωπ (Xt)Eπ

[
h (Xt+1)

∣∣Xt

]]
= EXt∼F

[
ωπ (Xt)Eπ

[
h (Xt+1)

∣∣Xt

]]
= EXt∼Fπ

[
Eπ
[
h (Xt+1)

∣∣Xt

]]
= EFπ [h (X)] ,

where the 3rd and 5th equalities leveraged stationarity.

Theorem 15.3. Under our stated assumptions, suppose furthermore that we
estimate the nuisance components in (15.7) on independent training data such
that, for all t = 1, . . . , T ,76

EF
[(
Q̂π(X)−Qπ(X)

)2
]

= oP
(
T−2αQ

)
,

EF
[
(ω̂π(X)− ωπ(X))2] = oP

(
T−2αω

) (15.11)

76The expectations below are taken over the test data; and the requirement is the training
produces on separate data achieve, with high probability, estimates with good test-set mean-
squared error.
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for constants αQ, αω ≥ 0 with αω + αQ ≥ 1/2. Then,

√
T
(
V̂DR(π)− V (π)

)
⇒ N (0, Σ)

Σ = EF
[
ω2
π(X1)

eπ(X1)
Eπ
[
(Y1 +Qπ(X2)−Qπ(X1)− V (π))2

∣∣X1

]]
,

(15.12)

provided that Σ is finite.

Proof. Our estimator has a self-normalized form, and so its errors can be ex-
pressed as

V̂DR(π)−V (π) =

∑T−1
t=1

(
Yt + Q̂π(Xt+1)− Q̂π(Xt)− V (π)

)
ω̂π(Xt)

1({Wt=π(Xt)})
eπ(Xt)∑T−1

t=1 ω̂π(Xt)
1({Wt=π(Xt)})

eπ(Xt)

.

We start by considering the denominator. By stationarity,

E0

[
ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

]
= E0

[
ωπ(Xt)E0

[
1 ({Wt = π(Xt)})

eπ(Xt)

∣∣Xt

]]
= E0 [ωπ(Xt)] = EF [ωπ(X)] = 1,

and so we can apply the ergodic theorem [e.g., Durrett, 2019, Chapter 6.2] to
verify that

1

T − 1

T−1∑
t=1

ωπ(Xt)
1 ({Wt = π(Xt)})

eπ(Xt)
→p 1. (15.13)

Furthermore, we see that

E0

[∣∣∣∣∣ 1

T − 1

T−1∑
t=1

(ω̂π(Xt)− ωπ(Xt))
1 ({Wt = π(Xt)})

eπ(Xt)

∣∣∣∣∣
]

≤ 1

η2

√√√√E0

[
1

T − 1

T−1∑
t=1

(ω̂π(Xt)− ωπ(Xt))
2

]

=
1

η2

√
EF
[
(ω̂π(X)− ωπ(X))2] = op(1)

by respectively invoking Cauchy-Schwarz, overlap, stationarity, and L2-
consistency of ω̂(·), thus implying that (15.13) also holds for ω(·) replaced
with ω̂(·).
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Meanwhile, the numerator can be decomposed as A+B + C +D with

A =
T−1∑
t=1

(Yt +Qπ(Xt+1)−Qπ(Xt)− V (π))ωπ(Xt)
1 ({Wt = π(Xt)})

eπ(Xt)
,

B =
T−1∑
t=1

(Yt +Qπ(Xt+1)−Qπ(Xt)− V (π)) (ω̂π(Xt)− ωπ(Xt))
1 ({Wt = π(Xt)})

eπ(Xt)
,

C =
T−1∑
t=1

(
Q̂π(Xt+1)−Qπ(Xt+1)−

(
Q̂π(Xt)−Qπ(Xt)

))
ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

,

D =
T−1∑
t=1

(
Q̂π(Xt+1)−Qπ(Xt+1)−

(
Q̂π(Xt)−Qπ(Xt)

))
× (ω̂π(Xt)− ωπ(Xt))

1 ({Wt = π(Xt)})
eπ(Xt)

.

We will show below that

A/
√
T ⇒ N (0, Σ) , |B| , |C| , |D| = oP

(√
T
)
. (15.14)

Thus, given what was shown about the denominator above, we can establish
(15.12) via Slutsky’s lemma.

Now, starting with the (dominant) term A, we note that the second Bellman
equation in Lemma 15.1 immediately implies that

E0

[
(Yt +Qπ(Xt+1)−Qπ(Xt)− V (π))ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

∣∣Xt

]
= 0

almost surely for all t, and so the term A is mean zero. Furthermore, by our
assumed Markov property, the summands forming A are a martingale difference
sequence, because conditioning on Xt is equivalent to conditioning on the full
past. Given this set up, we can study large-sample behavior of A via the
martingale central limit theorem. A key ingredient in doing so is to study
the conditional variance of the individual martingale difference terms. We can
again apply the ergodic theorem to verify that

1

T − 1

T−1∑
t=1

Var0

[
∆t, t+1

∣∣Xt

]
→p EX1∼F

[
Var0

[
∆1, 2

∣∣X1

]]
,

∆t, t+1 = (Yt +Qπ(Xt+1)−Qπ(Xt)− V (π))ωπ(Xt)
1 ({Wt = π(Xt)})

eπ(Xt)
,
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provided the right-hand side limit is finite. Furthermore,

EF
[
Var0

[
∆1, 2

∣∣X1

]]
= EF

[
E0

[
∆2

1, 2

∣∣X1

]]
= EF

[
E0

[
1 ({W1 = π(X1)}) ∆2

1, 2

∣∣X1

]]
= EF

[
eπ(X1)Eπ

[
∆2

1, 2

∣∣X1

]]
= Σ,

where the 2nd equality is true because ∆2
1, 2 = 0 whenever W1 6= π(X1), the

3rd equality is true by sequential unconfoundedness, and the 4th follows by
direct algebraic manipulation. Now, we have assumed that Σ < ∞ in the
theorem statement; thus the ergodic theorem in fact applies. The fact that
A/
√
T ⇒ N (0, Σ) then follows from the martingale central limit theorem

[e.g., Durrett, 2019, Theorem 8.2.8].
Next, moving to the lower-order terms, Lemma 15.1 implies that

E0

[
(Yt +Qπ(Xt+1)−Qπ(Xt)− V (π))

× (ω̂π(Xt)− ωπ(Xt))
1 ({Wt = π(Xt)})

eπ(Xt)

∣∣Xt

]
= 0,

and so the term B is mean-zero. Furthermore, it is again a martingale, and
so its variance is equal to the sum of the expected variance of each martingale
difference term; thus, by stationarity,

Var [B] = (T − 1)EF

[
Var0

[
(Y1 +Qπ(X2)−Qπ(X1)− V (π))

× (ω̂π(X1)− ωπ(X1))
1 ({W1 = π(X1)})

eπ(X1)

∣∣X1

]]

= (T − 1)EF

[
(ω̂π(X1)− ωπ(X1))2

eπ(X1)
Varπ

[
Y1 +Qπ(X2)

∣∣X1

]]
= O

(
(T − 1)EF

[
(ω̂π(X1)− ωπ(X1))2]) = op(T ),

and so B = op(
√
T ).

Meanwhile, we can verify that the term C is mean zero using Lemma 15.2:

E0

[(
Q̂π(Xt+1)−Qπ(Xt+1)−

(
Q̂π(Xt)−Qπ(Xt)

))
ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

]
= E0

[(
Q̂π(Xt+1)−Qπ(Xt+1)

)
ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

]
− E0

[(
Q̂π(Xt)−Qπ(Xt)

)
ωπ(Xt)

]
= 0.
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To calculate the variance of C, it is helpful to split it into two parts:

C1 =
T−1∑
t=1

(
E
[
Q̂π(Xt+1)−Qπ(Xt+1)

∣∣Xt, Wt

]
−
(
Q̂π(Xt)−Qπ(Xt)

))
× ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

,

C2 =
T−1∑
t=1

(
Q̂π(Xt+1)−Qπ(Xt+1)− E

[
Q̂π(Xt+1)−Qπ(Xt+1)

∣∣Xt, Wt

])
× ωπ(Xt)

1 ({Wt = π(Xt)})
eπ(Xt)

.

The latter term, C2 is a martingale and so can be can be shown to be op(
√
T ) by

a similar argument as used with B. The term C1, however, is not a martingale,
and so cross-terms matter. By stationarity,

Var [C1] = (T − 1)VarF

[
ωπ(X1)

1 ({W1 = π(X1)})
eπ(X1)

×
(
E
[
Q̂π(X2)−Qπ(X2)

∣∣X1, W1

]
−
(
Q̂π(X1)−Qπ(X1)

))]
+ (T − 2)CovF

[
ωπ(X1)

1 ({W1 = π(X1)})
eπ(X1)

×
(
E
[
Q̂π(X2)−Qπ(X2)

∣∣X1, W1

]
−
(
Q̂π(X1)−Qπ(X1)

))
,

ωπ(X2)
1 ({W2 = π(X2)})

eπ(X2)

×
(
E
[
Q̂π(X3)−Qπ(X3)

∣∣X2, W2

]
−
(
Q̂π(X2)−Qπ(X2)

))]
+ (T − 3) . . .

Then, given our ρ-mixing assumption, we can upper-bound this term as

Var [C1] ≤ (T − 1)
∞∑
t=1

ρt VarF

[
ωπ(X1)

1 ({W1 = π(X1)})
eπ(X1)

×
(
E
[
Q̂π(X2)−Qπ(X2)

∣∣X1, W1

]
−
(
Q̂π(X1)−Qπ(X1)

))]
,

recalling that we’ve assumed
∑∞

t=1 ρt <∞. Given our L2-consistency assump-
tion on Q̂ and boundedness assumptions on ω(Xt) and 1/eπ(Xt), this implies
that C1 = op(

√
T ).
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Finally, as already done in many proofs term D can be bounded via Cauchy-
Schwarz,

|D| ≤ 1

η

√√√√T−1∑
t=1

(
Q̂π(Xt+1)−Qπ(Xt+1)−

(
Q̂π(Xt)−Qπ(Xt)

))2

×

√√√√T−1∑
t=1

(ω̂π(Xt)− ωπ(Xt))
2

= OP

(
(T − 1)EF

[(
Q̂π(X)−Qπ(X)

)2
] 1

2

EF
[
(ω̂π(X)− ωπ(X))2] 1

2

)
= op(

√
T ),

where the second line follows by stationarity along with Markov’s inequality
and the last line follows by (15.11).

15.2 Switchback experiments

We showed above how—at the expense of some mathematical complexity—it is
possible to estimate policy values in Markov decision processes using data col-
lected under a generic sequentially randomized design. In practice, however, it
may be easier to change the data-collection procedure to more directly accom-
modate the problem structure, thus enabling more straight-forward analyses.

One such design is the switchback experiment. In principle, any experiment
that measures treatment effects by repeatedly toggling treatment on-and-off at
the system level can be referred to a switchback. In systems with temporal
carryovers, however, switchbacks are typically understood to be experiments
that set treatment to a given level, wait for the system to re-equilibriate, and
only then toggle it again. When running switchback experiments, the goal is
typically to estimate the total treatment effect,

τTOT = V (1)− V (0) (15.15)

i.e., the long-run average difference between the always-treat and never-treat
policies.

There are a variety of switchback designs considered in practice. The sim-
plest (and most widely used) switchback design has a fixed treatment window of
length L, and toggles treatment after every L time periods [Bojinov, Simchi-
Levi, and Zhao, 2023]. Here, we will consider an alternative “memoryless”
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switchback design, as it allows for a particularly simple analysis in the context
of the Markovian model used in this chapter. See Hu and Wager [2022] for
a discussion of standard (i.e., fixed-length) switchbacks under the Markovian
model, as well as results in a time-varying setting (i.e., with the Pt in Definition
15.1 changing over time).

Definition 15.2. A memoryless switchback with switch rate 0 < λ < 1 is
a design that sequentially assigns treatment Wt ∈ {0, 1} for t = 1, 2, . . . such
that W1 ∼ Bernoulli(0.5) and, for t ≥ 1,

Wt+1 ∼ Bernoulli ((1− λ)Wt + λ(1−Wt)) . (15.16)

The core fact about switchback experiments is that, if the typical amount of
time between treatment switches is long enough (i.e., in the case of memoryless
switchbacks, if the switch rate λ is low enough), then the raw difference in
means estimator

τ̂SB =
1

|Wt = 1|
∑

{t:Wt=1}

Yt −
1

|Wt = 0|
∑

{t:Wt=0}

Yt (15.17)

is consistent for the total effect. In practice, the behavior of this estimator can
be improved by removing burn-in samples right after a switch and other algo-
rithmic modifications [Bojinov, Simchi-Levi, and Zhao, 2023, Hu and Wager,
2022]; here, however, we will focus on the basic estimator (15.17).

To study switchback estimators, we will work in the “tabular” setting where
the covariates Xt ∈ X take values in a discrete space with |X | = k, meaning
that we can write the full treatment-dependent state-transition matrices as
Pw ∈ Rk×k where Pw

xx′ = P
[
Xt+1 = x

∣∣Xt = x′, Wt = w
]
. Our analysis also

applies directly to non-tabular settings; however, the discrete setting consider-
ably simplifies notation.

We will further assume geometric mixing whereby the state-transition
operator is a contraction:

‖Pw (ν ′ − ν)‖1 ≤ e−1/t0 ‖ν ′ − ν‖1 (15.18)

for any measures ν, ν ′ over X , i.e., for vectors over [0, 1]k with
∑

x νx = 1 and
likewise for ν ′; this condition immediately implies existence of a unique sta-
tionary distribution and geometric convergence to the stationary distribution
with a mixing time t0.

Theorem 15.4. Consider a time-homogenous Markov decision process satis-
fying (15.18), and suppose furthermore that |Yt| ≤ M almost surely. Then,
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writing τSB(λ) for the long-run average of τ̂SB under a Markovian switchback
with switcha rate λ, we have

|τSB(λ)− τTOT | ≤ 4Mλ (1 + t0) . (15.19)

Furthermore, if we run a sequence of memoryless switchbacks with horizon T
and switch rate λT , then τ̂SB →p τTOT whenever λT → 0 and TλT →∞.

Proof. First, as a preliminary, we note that the mixing condition (15.18) implies
that there are stationary distributions ν0 and ν1 that can be characterized
as the unique solutions to Pwνw = νw over the k-dimensional simplex; and
that the long-run average value of the always- and never-treat policies are
V (w) =

∑
x ν

w
x E

[
Yt
∣∣Xt = x, Wt = w

]
.

Now, moving to the switchback: Our assumptions that (Xt, Yt) are from a
Markov decision process while Wt is randomized in a memoryless way as given
in (15.16) imply that (Xt, Yt, Wt) together form a Markov chain. Writing νw(λ)
for the distribution of Xt conditionally on Wt = w under stationarity, the fixed-
point condition underlying the stationary joint distribution of (Xt, Wt) is(

ν0(λ)
ν1(λ)

)
=

(
(1− λ)P 0 λP 1

λP 0 (1− λ)P 1

)(
ν0(λ)
ν1(λ)

)
. (15.20)

Furthermore, the long-run average expectation of the difference-in-means esti-
mator is

τSB(λ) =
∑
x∈X

ν1
x(λ)E

[
Yt
∣∣Xt = x, Wt = 1

]
−
∑
x∈X

ν0
x(λ)E

[
Yt
∣∣Xt = x, Wt = 0

]
,

(15.21)

and so by boundedness we immediately see that

|τSB(λ)− τTOT | ≤M
(∥∥ν0(λ)− ν0

∥∥
1

+
∥∥ν1(λ)− ν1

∥∥
1

)
. (15.22)

It remains to bound the right-hand side of the above expression, and we use
mixing for this.

Focusing on the case w = 0, the top half of (15.20) can be re-written as(
I − P 0

)
ν0(λ) = λ

(
P 1ν1(λ)− P 0ν0(λ)

)
,

and because ν0 is a fixed point of P 0 we thus also have(
I − P 0

) (
ν0(λ)− ν0

)
= λ

(
P 1ν1(λ)− P 0ν0(λ)

)
.
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Combining this expression with (15.18), we get∥∥ν0(λ)− ν0 − λ
(
P 1ν1(λ)− P 0ν0(λ)

)∥∥
1

=
∥∥P 0

(
ν0(λ)− ν0

)∥∥
1

≤ e−1/t0
∥∥ν0(λ)− ν0

∥∥
1
,

and so by the triangle inequality(
1− e−1/t0

) ∥∥ν0(λ)− ν0
∥∥

1
≤ λ

∥∥P 1ν1(λ)− P 0ν0(λ)
∥∥

1
.

The statement (15.19) follows by noting that
(
1− e−1/t0

)−1 ≤ 1 + t0 and
‖P 1ν1(λ)− P 0ν0(λ)‖1 ≤ 2. Finally, the consistency claim follows because
λT → 0 implies that bias goes to 0 by the above, while the condition λTT →∞
implies that there are a diverging number of switches, and so τ̂SB−τ(λT )→p 0
thanks to mixing as in (15.18).

15.3 Bibliographic notes

Markov decision processes have been an object of sustained study in the rein-
forcement learning literature for decades. Our discussion in this chapter fits
within the area often referred to as off-policy learning in that literature, as we
seek to use data collected under one (randomized) design to predict rewards
under a different (target) policy. The off-policy setting is contrasted with the
on-policy setting, where we have access to a simulator that can be used to
explore states on demand [Sutton and Barto, 2018]. Some notable off-policy
algorithms developed in this literature include the temporal-difference learning
algorithm which seeks to estimate the discounted value function

Vπ,γ(x) = Eπ

[
∞∑
t=0

γt Yt
∣∣X0 = x

]
, 0 < γ < 1, (15.23)

of a target policy by focusing Bellman equations like those given in Lemma 15.1
[Sutton, 1988, Tsitsiklis and Van Roy, 1997],77 and the Q-learning algorithm
for finding the welfare-maximizing policy [Watkins and Dayan, 1992, Murphy,
2005].

The approach taken in this chapter builds on a line of work by Kallus and
Uehara [2020] who emphasized the role of Markovian assumptions in mitigating
the curse of dimensionality that affects the generic methods for dynamic policy
evaluation discussed in the previous chapter, and Liao, Klasnja, and Murphy

77Working with γ-discounted rewards rather than long-run average rewards results in sim-
ilar but different Bellman equations.
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[2021] who showed how Markov decision processes enable identification of the
long-run average value from sequentially unconfounded data. The approach
to doubly robust estimation of the long-run average value presented here is
adapted from Liao et al. [2022]; a similar approach to estimating discounted
policy values (rather than long-run average values) is discussed in Kallus and
Uehara [2022]. Setting where the density ratio ωπ(X) may be heavy tailed and
Σ as given in Theorem 15.3 is infinite is considered by Mehrabi and Wager
[2024]; the authors show that 1/

√
T -consistent estimation is no longer possible

in this setting, but a properly truncated version of the doubly robust estimator
from Theorem 15.3 can still achieve the minimax rate of convergence.

Switchback experiments are increasingly becoming a core part of the stan-
dard toolkit for causal inference in dynamic systems; Bojinov, Simchi-Levi,
and Zhao [2023] provides a comprehensive overview of the design. The analy-
sis presented here, i.e., with switchbacks used for policy evaluation in Markov
decision processes, is adapted from Hu and Wager [2022]. One important prac-
tical distinction between the doubly robust estimators from Section 15.1 and
switchback experiments is that the former require observing (and use of) the
state variables Xt, whereas switchbacks do not. One can ask what happens to
optimal inference in the setting of Section 15.1 if we no longer get to observe Xt

and instead need to just rely on mixing (15.18) as we did for switchbacks. This
setting is considered in Hu and Wager [2023], who show that 1/

√
T -consistent

estimation is in general not possible in this setting, and that switchback-like
truncated IPW estimators achieve the minimax (slower-than-1/

√
T ) rate.
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Chapter 16
Exercises

Exercise 1. Consider a randomized controlled trial under the assumptions of
Theorem 1.2. We already know that the difference-in-means estimator,

τ̂DM =
1

|{i : Wi = 1}|
∑

{i:Wi=1}

Yi −
1

|{i : Wi = 0}|
∑

{i:Wi=0}

Yi, (16.1)

is consistent and satisfies a central limit theorem in this setting. However,
following our discussion in Chapter 2, one might also consider the inverse-
propensity weighted estimator for τ ,

τ̂IPW =
1

n

n∑
i=1

WiYi
π
− (1−Wi)Yi

1− π
. (16.2)

The purpose of this question is to understand the relationship and relative
benefits of these two estimators.

(a) State and prove a central limit theorem for τ̂IPW (you may make any
regularity assumptions that are convenient for this purpose). Compare the
variance of τ̂IPW to the asymptotic variance of τ̂DM given in Theorem 1.2.

(b) What is the joint distribution of τ̂DM and τ̂IPW ? Based on your findings,
would you recommend using τ̂IPW in a randomized study?

Exercise 2. Chapter 1 discussed the behavior of linear regression adjustments
in randomized trials, and showed that such adjustments can be used to improve
asymptotic precision whether or not the data follows a linear specification.
The goal of this question is to extend these results to the case of generic non-
parametric (or machine learning based) regression adjustments. For all parts
below, you should work under the assumptions of Theorem 1.3.

(a) As shown in (1.27), the interacted regression estimator can be written as
an average difference in predictions. Suppose now that we set

τ̂ =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

)
, (16.3)
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but rather than using linear regression, we get µ̂(w)(x) from a machine learning
method that is consistent (under squared-error loss) for µ(w)(x) as defined in
(1.21). Are the following two statements true or false? If true, give a proof; if
false, give a counterexample.

• The estimator τ̂ is consistent.

• The estimator τ̂ is asymptotically normal, i.e.,
√
n(τ̂ − τ) ⇒ N (0, V )

for some finite asymptotic variance V .

We now consider an improvement to the basic estimator that debiases (16.3)
by considering regression residuals, and uses “cross-fitting” to avoid overfitting.
We first split the data (at random) into two halves I1 and I2, and then use

τ̂CF =
τ̂I1 + τ̂I2

2
, τ̂I1 =

1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi)− µ̂I2(0)(Xi)

+
Wi

π

(
Yi − µ̂I2(1)(Xi)

)
− 1−Wi

1− π

(
Yi − µ̂I2(0)(Xi)

))
,

(16.4)

where the µ̂I2(w)(·) are any estimates of µ(w)(·) obtained using only the half-
sample I2, and τ̂I2 is defined analogously (with the roles of I1 and I2 swapped).
In other words, τ̂I1 is a treatment effect estimator on I1 that uses I2 to estimate
its regression adjustments, and vice-versa.

(b) What is the bias of the estimator (16.4), i.e., what is E [τ̂CF ]− τ , where τ
denotes the ATE?

(c) Assume that our non-parametric regression adjustments µ̂I2(w)(·) are risk-
consistent, i.e.,

lim
n→∞

E

[
1

|I1|
∑
i∈I1

(
µ̂I2(w)(Xi)− µ(w)(Xi)

)2
]

= 0, (16.5)

and similarly with I1 and I2 swapped. Prove a central limit theorem for τ̂CF ,
i.e., show that

√
n(τ̂CF − τ)⇒ N (0, VCF ) for some asymptotic variance VCF ,

and characterize VCF . Compare VCF to the asymptotic variance VIREG given
in (1.23).

(d) Consider the setting discussed in Chapter 1 where a linear model is well-
specified,

Yi(w) = Xiβ(w) + εi(w), εi(w) ∼ N
(
0, σ2

)
, (16.6)

and compare the asymptotic behavior of (16.4) under assumption (16.5) with
the asymptotic behavior of the OLS estimator discussed in Chapter 1. Does
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one estimator dominate the other? (You may assume π = 0.5, etc., for conve-
nience.)

Exercise 3. A common issue in applying the IPW estimator discussed in
Chapter 2 arises when there are some units who are a-priori very unlikely to
get treated, and have e(Xi) ≈ 0. This situation could arise, for example, in
a medical application where Wi denotes a candidate intervention and some
patients are obviously healthy based on their Xi and so will never get treated.
And, when e(Xi) may get close to 0, the IPW estimator (which involves dividing
by e(Xi)) may be unstable.

One solution to this difficulty is to change statistical targets, and to focus on
the average treatment effect on the treated instead:

τATT = E
[
Yi(1)− Yi(0)

∣∣Wi = 1
]
. (16.7)

In many applications, focusing on the ATT can improve the precision of the
available estimators—and can also improve be of substantive interest (since the
ATT measures average the value of the treatment among people who got the
treatment in the sampling distribution). Throughout this question, you may
assume that the propensity scores e(Xi) are known a-priori and can be used
for estimation, and that e(Xi) ≤ 1 − η for some η > 0. You may also take
P [Wi = 1] = π to be known.

(a) Propose an IPW-style estimator for the ATT (using the true propensity
scores), and prove that it is unbiased.

(b) Derive the asymptotic variance of estimator derived in part (a), and state
a central limit theorem for it.

(c) Compare the asymptotic variance of the oracle IPW estimators for the
ATE and the ATT in a setting where e(Xi) may get very small, and discuss
the robustness of both estimators to small propensity scores.

Exercise 4. In Chapter 2, we defined a propensity-stratified estimator
τ̂PSTRAT . The purpose of this question is to flesh out our study of this es-
timator. You may assume that the assumptions of Theorem 2.2 hold, that we
have overlap in the sense that η ≤ e(x) ≤ 1−η for all x ∈ X , that the distribu-
tion of the propensity scores e(X) admits a density fe(·) that is bounded away
from 0 on the interval [η, 1− η], and that the outcomes are bounded |Yi| ≤M
for some large constant M .

(a) Show that if J = nρ for some constant 0 < ρ < 1, then the estima-
tor τ̂PSTRAT implemented using the true propensity scores is consistent, i.e.,
τ̂PSTRAT →p τ where τ is the average treatment effect.
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(b) Conduct a simulation study to evaluate the pros and cons of inverse-
propensity weighting and stratification. Generate data in R as follows, for
n = 100, 200, 400, 800, 1600, 3200 and p = 10:

X = matrix(runif(n * p, -1, 1), n, p)

propensity = 0.1 + 0.85 * sqrt(pmax(0, 1 + X[,1] + X[,2])/3)

W = rbinom(n, 1, propensity)

Y = W * pmax(0, X[,1]) + exp(X[,2] + X[,3])

Fit propensities ê via logistic regression, and then estimate τ via τ̂IPW and
τ̂PSTRAT using the fitted propensities.

What is the average treatment effect τ in this simulation design? What is
a good choice for J? How does the performance of τ̂IPW compare to that of
τ̂PSTRAT in terms of bias? What about in terms of mean-squared error? A good
analysis will rely on enough simulation replications to mitigate uncertainty due
to Monte Carlo effects, and convey results via appropriate visual displays.

(c) Show that, for a properly chosen sequence J(n), the propensity-stratified
estimator (now again implemented using the true propensities) is asymp-
totically unbiased and Gaussian, i.e.,

√
n(τ̂PSTRAT − τ) ⇒ N (0, VPSTRAT ).

Propose a consistent variance estimator for V̂PSTRAT for VPSTRAT , such that
V̂PSTRAT / VPSTRAT →p 1. Discuss how these results can be used to build a
confidence interval for τ centered at τ̂PSTRAT .

(d) In Chapter 3, we showed how to “augment” the inverse-propensity weighted
ATE estimator with a regression adjustment, and showed that the resulting
AIPW estimator had improved robustness and precision properties relative to
the basic IPW estimator. How would you analogously “augment” the propen-
sity stratified estimator studied here? Propose an estimator, and argue for it.
(Note: Your argument doesn’t need to be formal; a short qualitative argument
is enough.)

Exercise 5. In Corollary 4.3, we gave asymptotic properties of the residual-
on-residual estimator,

τ̂R =

∑n
i=1

(
Yi − m̂(−k(i))(Xi)

) (
Wi − ê(−k(i))(Xi)

)∑n
i=1 (Wi − ê(−k(i))(Xi))

2 , (16.8)

for estimating the treatment parameter τ under the constant treatment effect
model Yi(w) = f(Xi) + wτ + εi. The purpose of this question is to study
this same residual-on-residual estimator under misspecification of the constant
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treatment effect hypothesis. Assume that data is independently generated as

Yi(w) = µ(w)(Xi) + εi(w), E
[
εi(w)

∣∣Xi = x, Wi = w
]

= 0,

Var
[
εi(w)

∣∣Xi = x, Wi = w
]

= σ2,
(16.9)

and write τ(x) = µ(1)(x) − µ(0)(x). Our goal is to characterize asymptotic
behavior of τ̂R under model (16.9). Throughout this problem you may assume
that e(x) ∈ (0, 1); however, overlap is not required.

(a) Let τ̂ ∗R be the “oracle” version of the estimator (16.8), computed using
the true m(x) and e(x). Show that τ̂ ∗R converges in probability to a limit τR
that is a non-negative weighted average of the conditional average treatment
effect τ(x), i.e., τR = E [γ(Xi)τ(Xi)] for some function with γ(x) ≥ 0 and
E [γ(Xi)] = 1.

(b) Show that this oracle estimator satisfies a central limit theorem
√
n(τ̂ ∗R −

τR)⇒ N (0, VR), and provide an expression for VR. How does VR compare to
the semiparametric efficient variance for average treatment effect estimation?

(c) Suppose that m̂(Xi) and ê(Xi) satisfy the rate conditions (4.7). Show that√
n(τ̂R− τ̂ ∗R)→p 0, and so the feasible estimator (16.8) also satisfies the central

limit theorem established in part (b).

Exercise 6. Consider a hypothetical company that has a phone app that they
use to offer K > 3 different products that customers can choose to purchase.
However, given the size of a phone screen, it can only show 3 (ranked) rec-
ommendations to a user at any given time. Your goal is to help the platform
evaluate how different ranking strategies affect performance.

You have data on i = 1, . . . , n IID customers who have interacted with the
platform. For each customer, the platform:

• Computes scores Si1, . . . , SiK > 0 reflecting how well each product is
suited to the i-th customer. (These scores are computed by some black-
box algorithm you don’t have access to, but they are recorded and are
included in your dataset.)

• Randomly chooses a product A
(1)
i to display first, such that

P
[
A

(1)
i = k

]
= eSi,k

/ K∑
`=1

eSi,` for all k = 1, . . . , K.

• Randomly chooses a product A
(2)
i to display second, such that

P
[
A

(2)
i = k

]
= eSi,k

/ ∑
` 6=A(1)

i

eSi,` for all k 6= A
(1)
i .
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• Randomly chooses a product A
(3)
i to display second, such that

P
[
A

(3)
i = k

]
= eSi,k

/ ∑
`6=A(1)

i , A
(2)
i

eSi,` for all k 6= A
(1)
i , A

(2)
i .

• Observes a reward Yi.

For the purpose of the questions below, you should assume that the exact
ranking A

(1)
i , A

(2)
i , A

(3)
i shown to the user matters. Note that the platform

does not rank the other products (you may assume, e.g., that if the customer
wants to select one of the other products, they need to do so by navigating to
a separate static list that shows products in alphabetical order).

We will refer to (both random and deterministic) methods for ranking products
as policies, and to the expected reward the platform would achieve by deploying
a policy as the value V of the policy. The available data

Dn =
{
Si, A

(1)
i , A

(2)
i , A

(3)
i , Yi

}n
i=1

generated as described above, is the same for all 4 parts below. An unbiased
estimator of policy value V is a (measurable) function V̂ of the observed data
Dn for which E[V̂ ] = V . We assume that each unit has potential outcomes
Yi(a1, a2, a3) such that the observed reward is

Yi = Yi

(
A

(1)
i , A

(2)
i , A

(3)
i

)
,

and the value of a policy π is

V (π) = EAi∼π(Si) [Yi(Ai)] , Ai =
(
A

(1)
i , A

(2)
i , A

(3)
i

)
,

where Ai ∼ π(Si) means that Ai is generated via the (potentially random)
function π of Si.

(a) Propose an estimator that, given the available data Dn, gives an unbiased
estimate of the value of the current randomized policy (i.e., the policy used in
data collection).

(b) Propose an estimator that, given the available data Dn, gives an unbiased
estimate of the value of a policy that always uses a fixed ranking a1, a2, a3

(i.e., sets A
(1)
i = a1, A

(2)
i = a2, A

(c)
i = a3 for some 1 ≤ a1 6= a2 6= a3 ≤ K).

(c) Propose an estimator that, given the available data Dn, gives an unbiased
estimate of the value of a randomized policy that always shows some product
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a1 first (i.e., deterministically sets A
(1)
i = a1 for some 1 ≤ a1 ≤ K), but then

randomly chooses A
(2)
i and A

(3)
i using the available scores in the same way as

with the data collection policy.

(d) Propose an estimator that, given the available data Dn, gives an unbiased
estimate of the value of a randomized policy that never shows some product
a0 with 1 ≤ a0 ≤ K, but otherwise randomly draws random products using
scores as with the data collection policy (operationally, you could assume that
if any of the random draws gives A

(`)
i = a0, then the platform re-draws from

the same distribution until A
(`)
i 6= a0).

Exercise 7. Consider the following model for adaptive data-collection (η > 0
is a tuning parameter): For t = 1, . . . , T time steps, we

• Choose a probability ωt ∈ [η, 1], potentially using past data.

• Draw a Bernoulli random variable Zt ∼ Bern(ωt).

• If Zt = 1, we observe a draw Yt ∼ F ; while if Zt = 0, we cannot make an
observation (equivalently, we hard-code Yt = 0).

Our goal is to estimate the mean µ = EF [Y ], and are considering 3 different
estimators:

1. Sample average: µ̂1 =
∑
{t:Zt=1} Yt / |{t : Zt = 1}|.

2. Inverse-propensity weighting: µ̂2 = T−1
∑T

t=1 ZtYt / ωt.

3. Stabilized inverse-propensity weighting: µ̂3 =∑T
t=1 ZtYt / ωt

/ ∑T
t=1 Zt / ωt.

Answer the following questions. To avoid degenerate cases, you may assume
that ω1 = 1, i.e., we always collect at least 1 sample. You may also make any
regularity assumption you find to be convenient (e.g., that the Yt have bounded
support).

(a) Which of the 3 estimators above are unbiased, i.e., satisfy E [µ̂] = µ?
Provide a proof or counterexample.

(b) Now consider a large-sample limit, with T → ∞. In this setting, we say
that an estimator is asymptotically unbiased if

lim
T→∞

√
T (E [µ̂]− µ) = 0.

Which of the 3 estimators above are asymptotically unbiased? Provide a proof
or counterexample.
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Exercise 8. Theorem 7.1 provides the asymptotic distribution of the covariate-
balancing propensity score estimator τ̂CBPS under a linear-logistic specification
where both

µ(w) = x · β(w), β(w) ∈ Rp for w = 0, 1, (16.10)

e(x) = 1
/ (

1 + e−x·θ
)
, θ ∈ Rp, ‖θ‖2 <∞. (16.11)

The goal of this question is to study double robustness properties of τ̂CBPS.78

In answering this question, you may replace the exponential moment condition
(7.12) with the stronger boundedness condition ‖Xi‖2 ≤M .

(a) Under the setting of Theorem 7.1, suppose that (16.10) holds but that
(16.11) may not hold. Prove that τ̂CPBS →p τ , where τ denotes the ATE. You
may assume that strong overlap holds, η ≤ e(Xi) ≤ 1− η, if convenient.

(b) Under the setting of Theorem 7.1, suppose conversely that (16.11) holds
but that (16.10) may not hold. Prove that τ̂CPBS →p τ . You may assume that
outcomes are bounded, |Yi| ≤M , if convenient.

Exercise 9. Under the conditions of Theorem 7.1 suppose that, rather than
the ATE, we want to estimate the average treatment effect on the treated
(ATT) as in Exercise 3, τATT = E

[
Yi(1)− Yi(0)

∣∣Wi = 1
]
. We claim that

θ̂ = argminθ

{
1

n1

n∑
i=1

(
(1−Wi) e

Xiθ −WiXiθ
)}

, (16.12)

τ̂CBPS−ATT =
1

n1

n∑
i=1

(
WiYi − (1−Wi) e

Xiθ̂ Yi

)
, (16.13)

is the natural CBPS estimator for this task, and has good statistical properties.

(a) Verify that (16.12) is a convex minimization problem.

(b) Verify that (16.13) is in fact a CBPS estimator, i.e., that it is the IPW
estimator for some specific choice ê(x) = 1 / (1 + exθ̂), and that θ̂ satisfies a
relevant sample-balance condition whenever the minimization problem (16.12)
has an interior solution (i.e., ‖θ̂‖ <∞).

(c) Prove that τ̂CBPS−ATT is consistent for τATT , and establish a central limit
theorem. For simplicity, you may assume that ‖Xi‖2 ≤M uniformly.

78Following the nomenclature in Chapter 3, we are here focused on weak double robustness.
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Exercise 10. Consider an IID sequence (Xi, Ui, Yi, Wi) ∈ X ×U×R×{0, 1},
where Yi = Yi(Wi) for a pair of potential outcomes {Yi(0), Yi(1)}. Unconfound-
edness holds conditionally on Xi and Ui, i.e.,

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi, Ui. (16.14)

However, only Xi is observed, whereas Ui is an unobserved confounder. In this
question, we’ll study the behavior of (stabilized) IPW estimators of µ(1) =
E [Yi(1)] in the presence of unobserved confounding. To this end, define both
the feasible and infeasible IPW estimators, the latter of which makes use of
the unobserved Ui:

µ̂SIPW (1) =
n∑
i=1

WiYi
e(Xi)

/ n∑
i=1

Wi

e(Xi)
,

µ̃SIPW (1) =
n∑
i=1

WiYi
e(Xi, Ui)

/ n∑
i=1

Wi

e(Xi, Ui)
,

(16.15)

where e(x) = P
[
Wi = 1

∣∣Xi = x
]

and e(x, u) = P
[
Wi = 1

∣∣Xi = x, Ui = u
]
.

Under the unconfoundedness condition (16.14), µ̃SIPW (1) is clearly consistent
for µ(1), but µ̂SIPW (1) may not be.

In general, it’s not possible to say much about the bias of µ̂SIPW (1). Thus, we’ll
make a further assumption about how the unobserved Ui may affect sampling
probabilities, and assume that we know a constant Γ ≥ 1 such that

1

Γ
≤ e(Xi, Ui)

e(Xi)
≤ Γ for all i = 1, ..., n, (16.16)

almost surely. This assumption is commonly known as the marginal sensitivity
model, and can be used to assess the sensitivity of IPW to hidden confounding.

(a) Under (16.16), show that there exist weights Γ−1
i ≤ γi ≤ Γi such that

µ̃SIPW (1) = µ̂SIPW (1; γ) :=
n∑
i=1

γi
WiYi
e(Xi)

/ n∑
i=1

γi
Wi

e(Xi)
. (16.17)

(b) Given (16.17), we have the following upper bound for µ̃SIPW (1):

µ̂+
SIPW (1) = sup

{
µ̂SIPW (1; γ) : Γ−1

i ≤ γi ≤ Γi
}
. (16.18)

Show that the above optimization program can be solved by linear program-
ming, and express the problem in a way that could be plugged into standard
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linear programming software, i.e., in format “maximize c′x subject to Ax ≤ b”,
where we optimize over the vector x and take A, b and c as given.

Hint. Consider the Charnes-Cooper transformation for linear-fractional pro-
gramming.

(c) Using the construction in (16.18), propose an interval

ÎSIPW (1) =
[
µ̂−SIPW (1), µ̂+

SIPW (1)
]

(16.19)

that does not use the unobserved Ui, but has the property that
µ̃SIPW (1) ∈ ÎSIPW (1) almost surely. Show that the interval ÎSIPW (1) is consis-
tent for µ(1) in the following sense: For any ε > 0

lim
n→∞

P
[
µ(1) ∈

(
µ̂−SIPW (1)− ε, µ̂+

SIPW (1) + ε
)]

= 1. (16.20)

In doing so, you may make any regularity assumptions you find to be convenient
(e.g., bounds on moments).

(d) Discuss how the intervals (16.19) could be used in practical data analy-
sis to assess the sensitivity of IPW to the potential presence of unobserved
confounders.

Exercise 11. Consider the following structural model, where
(Xi, Yi, Wi, Zi) ∈ X × R× {0, 1} × {0, 1} are taken to be IID:

Yi = α(Xi) +Wiτ(Xi) + εi, εi ⊥⊥ Zi
∣∣Xi, E

[
εi
∣∣Xi

]
= 0

Cov
[
Wi, Zi

∣∣Xi = x
]
≥ η > 0 for all x ∈ X .

(16.21)

In other words, conditionally on covariates Xi, this is the same structural model
as used in Chapter 9.2; now, however, all problem primitives may also vary with
x. Furthermore, we assumed that the effect of the instrument on the outcome
is always positive and uniformly bounded from below.

Your goal is to develop methods to estimate the average treatment effect param-
eter τ = E [τ(X)]. In all parts below, you may make any regularity assumptions
you find to be helpful (e.g., boundedness of outcomes).

(a) Define the “compliance score” ∆(x) and the associated inverse-compliance
weighted estimator,

∆(x) = P
[
Wi = 1

∣∣Zi = 1, Xi = x
]
− P

[
Wi = 1

∣∣Zi = 0, Xi = x
]
,

τ̂ICW =
1

n

n∑
i=1

1

∆(Xi)

(
ZiYi
z(Xi)

− (1− Zi)Yi
1− z(Xi)

)
,

(16.22)
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where z(x) = P
[
Zi = 1

∣∣Xi = x
]

is an analogue to the propensity score for the
instrument Zi. Prove that the oracle inverse-compliance weighted estimator
(i.e., using the true values of z(·) and ∆(·)) is unbiased and consistent for τ .

(b) Now suppose you obtain estimates α̂(x) and τ̂(x) for the structural param-
eters in (16.21). Propose an augmented inverse-compliance weighted (AICW)
estimator. Argue that your AICW estimator is (weakly) doubly robust, i.e.,

it is consistent if either α̂(x) and τ̂(x) are sup-norm consistent, or ∆̂(x) and

ẑ(x) are sup-norm consistent (where ∆̂(x) and ẑ(x) are feasible estimates of
the nuisance components in (16.22)). A high-level argument is enough here;
no need to go into details.79

(c) Show that if all the nuisance components α̂(x), τ̂(x), ∆̂(x) and ẑ(x) are
both sup-norm consistent and op(n

−1/4) consistent in root-mean squared error,
then AICW with cross-fitting is

√
n-consistent for τ and asymptotically normal.

Write down a central limit theorem, and provide an expression for the limiting
variance of AICW.

Exercise 12. In Chapter 10.1, we studied instrumental variables regression
with a binary treatment and binary instrument. We showed that under a “no
defiers” assumption, i.e.,

P [Wi(0) < Wi(1)] = 0, (16.23)

the instrumental variables estimator converges to the average treatment effect
estimator for the compliers. Your goal in this question is to understand what
happens when we relax this assumption.

Under the setting of Theorem 10.1, suppose now that we may have defiers, but
there exist unobserved latent factors Ui for which

P
[
Wi = 1

∣∣Zi = 1, Ui = u
]
> P

[
Wi = 1

∣∣Zi = 0, Ui = u
]
,

{Yi(0), Yi(1)} ⊥⊥ Ci
∣∣Ui = u, for all u,

(16.24)

i.e., given the unobserved latent factors, we assume that the treatment effect
is independent of compliance type, and that all latent types are more likely to
comply than to defy. Also assume that Zi is still exogenous once we include
the Ui into the model,

Zi ⊥⊥ {Ui, Yi(0), Yi(1), Wi(0), Wi(1)} .
79You also do not need to elaborate on how to construct the estimates α̂(·), τ̂(·), etc.
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Write an expression for τLATE in terms of

τ(u) = E
[
Yi(1)− Yi(0)

∣∣Ui = u
]
,

κ(u) = P
[
Ci = complier

∣∣Ui = u
]
, and

δ(u) = P
[
Ci = defier

∣∣Ui = u
]
.

Show that, if τ(u) ≥ 0 for all u, then τLATE ≥ 0.

Exercise 13. Consider a set of n random variables (Wi, Yi) ∈ {0, 1} × R.
Assume that the data is generated as follows:

• Each unit i = 1, . . . , n is characterized by (deterministic) parameters αi,
βi, γi ∈ R.

• We choose a treatment probability π ∈ [0, 1], and independently generate
Wi ∼ Bernoulli(π) for each i = 1, . . . , n.

• We observe the following, where εi ∼ N (0, σ2) independently of every-
thing else:

Yi = αi + βiWi + γi

∑
j 6=iWj

n− 1
+ εi

We use the notation Eπ [Yi] for the expectation of the i-th outcome under this
model (with treatment probability π), as well as immediate generalizations of
this notation. Note: Qualitatively, αi captures the i-th unit’s baseline effect,
βi its sensitivity to its own treatment, and γi its sensitivity to the fraction of
other units who are treated.

(a) What is the total effect, i.e., the expected difference in average outcomes
when everyone is treated vs. when no one is:

τTOT =
1

n

n∑
i=1

E1 [Yi]−
1

n

n∑
i=1

E0 [Yi] .

(b) Now suppose we are able to collect observations at a single π ∈ (0, 1), and
seek to estimate the effect of the treatment via the näıve inverse-propensity
weighted estimator that ignores spillovers,

τ̂IPW =
1

n

n∑
i=1

(
WiYi
π
− (1−Wi)Yi

1− π

)
.

What is Eπ [τ̂IPW ]?
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(c) In the same setting as above, what is Varπ [τ̂IPW ]?

(d) Is τ̂IPW a good estimator of τTOT in this model? Can τ̂IPW be used to
learn anything interesting in this model?

Exercise 14. One important question in survival analysis is to assess prognosis
given a diagnosis. We have data on i = 1, . . . , n people who are diagnosed
with a condition at time t = 0; at this time, we also measure time-invariant
convariates Xi ∈ X . We write Yi for the length of time the i-th person survives
post-diagnosis, and are interested in estimating θ = P [Yi > T ] for some target-
horizon T .

The challenge, however, is that we may lose track of some patients in our
study before we get to see whether they live past time T . Specifically, we will
assume that we follow-up with each patient at a set of pre-determined times
t = 1, . . . , T , and at each of these follow-ups we either are able track down
the patient (in which case we can observe whether the patient is still alive, i.e.,
whether Yi > t), or we are unable to track down the patient and deem them
to be censored at time t (and we cease further follow-up attempts).

Formally, we assume that each unit has a (potentially non-realized) censoring
time Ci ∈ {1, 2, . . . , T, +∞}, where Ci = +∞ means the unit is never cen-
sored. We then assume that, rather than getting to directly observe survival
time Yi, we only have access to

Ui = min {Ci, Yi} , ∆i = 1 (Yi < Ci) , (16.25)

which we refer to as the observation time and the non-censoring indicator
respectively. Let

U i = inf {t ∈ {1, 2, . . . , T, +∞} : t ≥ Ui} , Hi = min
{
U i, T

}
, (16.26)

respectively denote the time of the follow-up time at which the observation is
recorded (e.g., if someone dies at time 1.5, we only learn about this at the time
t = 2 follow-up), and the time of the last visit (i.e., Hi = T even if the patient
is still alive and uncensored at that point).

We also make the following statistical assumptions:

• Censoring is ignorable, i.e.,

Yi ⊥⊥ Ci
∣∣Xi; (16.27)

• Some patients are never censored, i.e., there is an η > 0 such that

P
[
Ci > T

∣∣Xi = x
]
≥ η for all x ∈ X . (16.28)
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Note that these assumptions are closely related to our familiar assumptions of
unconfoundedness and overlap for treatment effect estimation.

We define the conditional survival functions

SY (t; x) = P
[
Yi > t

∣∣Xi = x
]
, SC(t; x) = P

[
Ci > t

∣∣Xi = x
]
, (16.29)

with a convention that SY (0; x) = SC(0; x) = 1. We will assume that we have
access to estimates for these objects using a separate training set.80

(a) Suppose that the survival function for the censoring distribution SC(t; x)
is known. Show that, under our assumptions, the following inverse-probability
of censoring (IPCW) estimator is unbiased for θ:

θ̂IPCW =
1

n

n∑
i=1

∆i1 ({Ui > T})
SC(Ui; Xi)

. (16.30)

(b) Now, consider a setting where we have access to estimates ŜY (t; x) and
ŜC(t; x) obtained using a separate training set, and consider the following
augmented IPCW (AIPCW) estimator:81

θ̂AIPCW =
1

n

n∑
i=1

ŜY (T ; Xi)

+

Hi−1∑
t=1

1

ŜC(t; Xi)

(
ŜY (T ; Xi)

ŜY (t; Xi)
− ŜY (T ; Xi)

ŜY (t− 1; Xi)

)

+
∆i

ŜC(Hi; Xi)

(
1 ({Ui > T})− ŜY (T ; Xi)

ŜY (Hi − 1; Xi)

)
,

(16.31)

where Hi is as defined in (16.26). Show that, under our setting, if furthermore

E
[(

1/ŜC(t; Xi)− 1/SC(t; Xi)
)2
]

= oP
(
n−2αC

)
,

E
[(

1/ŜY (t; Xi)− 1/SY (t; Xi)
)2
]

= oP
(
n−2αY

) (16.32)

80We will not investigate how to estimate these quantities here; however, we note that one
popular way to estimate unconditional survival functions is via the Kaplan–Meier estimator
[Kaplan and Meier, 1958]; and this method can be made conditional on covariates Xi via,
e.g., the random survival forest construction [Ishwaran et al., 2008].

81There is also an analogous continuous-time AIPCW estimator; see, e.g., Rubin and
van der Laan [2007] and Cui et al. [2023]. To see the connection between the expression
in θ̂AIPCW and the standard continuous-time formula, it is helpful to first apply the Abel
transformation to the sum in (16.31).
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for constants αC , αY ≥ 0 with αC + αY ≥ 1/2, then

√
n
(
θ̂AIPCW − θ

)
⇒ N

(
0, σ2

AIPCW

)
σ2
AIPCW = Var [SY (T ; Xi)]

+
T∑
t=1

E
[
S2
Y (T ; Xi)

SC(t; Xi)

SY (t− 1; Xi)− SY (t; Xi)

SY (t− 1; Xi)SY (t; Xi)

]
.

(16.33)

Hint: This result is a corollary of Theorem 14.3. To establish this, imagine
an analogous dynamic policy evaluation problem where there is no censoring;
however, all units start under the status-quo treatment, but then transition to
an experimental treatment at time Ci if they are still alive. Argue that esti-
mating θ in the setting of this question is equivalent to estimating Pπ0 [Yi > T ]
for the analogous dynamic policy evaluation setting with π0 corresponding to
the policy that never starts the experimental treatment; and that θ̂AIPCW is
equivalent to the doubly robust estimator V̂AIPW (π0) derived in Chapter 14.
Thus statistical properties of θ̂AIPCW can be derived from Theorem 14.3.
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Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends® in
Machine Learning, 5(1):1–122, 2012.
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