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Abstract

In this paper, we review an effective approach for computing option Greeks through the
lens of Malliavin Calculus, a branch of Stochastic Calculus that enables the differentiation
of random variables. This approach provides more stable and efficient results compared
to the finite difference methods, especially for non-smooth payoff functions.

From Weierstrass to Malliavin

In the 19th century, mathematicians such as Augustin-Louis Cauchy and Karl Weier-
strass pushed for a transformation in mathematical analysis that gave rigor and clarity
to the previously vague concept of differentiability. While Cauchy defined the limit and
formalized the notion of derivative, Weierstrass gave a full, rigorous definition and drew
a clear distinction between continuity and differentiability.

Back in the 18th century, it was assumed that any continuous function should be
differentiable. There were only a few isolated examples where continuity did not imply
differentiability. Take, for example, the absolute value function f(x) = |x|, which is
differentiable everywhere except for x = 0. However, in 1872, Karl Weierstrass presented
an example of a continuous function that was not differentiable at any point:

f(x) =
∞∑
n=0

an cos(bnx)

for some carefully chosen values of a and b. This pathological function was the first
example of a continuous nowhere-differentiable function. It was at this moment that it
became clear that continuity does not imply differentiability. In fact, it was discovered
that most continuous functions are nowhere differentiable. It is really the differentiable
functions that are the exceptions rather than the rule.

Surprisingly enough, around 50 years earlier, a Scottish botanist named Robert Brown
had discovered another example of a continuous nowhere-differentiable function while
studying pollen grains in water under a microscope. Brown noticed that tiny particles
inside the pollen grains exhibited a continuous, erratic movement. This phenomenon
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Figure 1: A sketch of Weierstrass function for a = 3/4 and b = 3.

would receive the name of Brownian Motion. Almost two centuries later, in 1905, Albert
Einstein provided a theoretical explanation for Brownian motion in his paper on molec-
ular kinetics. Einstein’s mathematical model connected Brownian motion with diffusion
equations.

Later, in the 1920s, an American mathematician called Norbert Wiener gave a math-
ematically rigorous definition of Brownian Motion. Wiener modeled this phenomenon
as a stochastic process and defined Brownian Motion as a continuous-time random walk
with the following properties:

• Independent, stationary, and normally distributed increments.

• Continuous (but nowhere differentiable) paths.

• Starts at zero.

The non-differentiability nature of the process is due to its fractal behavior. The
erratic oscillations are present at every scale, no matter how much we ”zoom in” on a
Brownian Motion path. An informal proof of this non-differentiability property is the
following:

Consider a Brownian motion Wt. The increments Wt+h − Wt are distributed nor-
mally with zero mean and standard deviation

√
h. If we consider the following difference

quotient:

Wt+h −Wt

h
∼

√
h

h
N (0, 1) =

N (0, 1)√
h

→ ∞ as h → 0

In other words, if we try to compute the derivative of Wt, we get that it fluctuates
between −∞ and ∞. In order to illustrate how ”wild” these oscillations are, we provide
some non-differentiable facts about Brownian Motion:
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Figure 2: Sample path of a Brownian Motion

• For a Brownian Motion starting at 0, the probability that it crosses zero infinitely
many times in any interval (0, t) is 1.

• For a Brownian Motion starting at 0, the probability that it crosses zero in the
interval (t1, t2), where 0 < t1 < t2, is strictly greater than zero.

After defining Brownian Motion rigorously, another challenge arose in the world of
Stochastic Calculus. The question was whether it was possible to make sense of the
following integral: ∫

f dW

Intuitively, a conventional Riemann integral
∫
f dx can be defined as the sum of

infinitely many rectangles of width dx. However, how can we define an integral where
the width of the rectangles, dW , is random? Moreover, it is impossible to construct a
Lebesgue-Stieltjes integral of the form:∫

f(x) dg =

∫
f g′(x)dx

if g is nowhere differentiable. The problem remained unsolved for 30 years. However,
in the late 1940s, Japanese mathematician Kiyoshi Itô gave a formal definition to this
integral in a probabilistic manner. This integral would receive the name of Itô Integral
and is defined as: ∫ T

0

ft dWt = lim
N→∞

N∑
j=1

ftj−1
(Wtj −Wtj−1

)

where tj = jT/N and ft is an adapted process which is square integrable. Additionally,
Itô proved an equivalent version of the chain rule for Stochastic Calculus, named Itô’s
Lemma:
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df =
∂f

∂Xt

dXt +
∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

Here, f is a twice differentiable function and Xt is an Itô Process, a special type of
stochastic process that is a function of both time and Brownian Motion, and is composed
of a drift term and a diffusion term.

We now return to the Itô Integral. After defining this integral, a natural question
arises: is there an explicit expression for the integrand? In other words, given an Itô
integral of the form:

Mt =

∫ t

0

fsdWs

can we define fs as a kind of differentiation operator within a probabilistic framework?
This is, in fact, made possible by the Malliavin Derivative. This operator was introduced
by the French mathematician Paul Malliavin in his 1976 paper ”Stochastic Calculus of
Variation and Hypoelliptic Operators”, which laid the foundation for a new branch of
Stochastic Analysis known as Malliavin Calculus.

The Malliavin Derivative allows us to compute derivatives of random variables and
stochastic processes. It is, in fact, a way to differentiate continuous nowhere-differentiable
functions, although it is not a conventional derivative (defined with a limit) but a stochas-
tic derivative that mimics the properties of classical differentiation.

Finally, in 1999, the Malliavin Calculus found an interesting application in the world
of mathematical finance, the computation of option Greeks, which are the derivatives of
option prices with respect to one or more underlying parameters. As we will prove later,
this new approach is more accurate than traditional finite difference methods, especially
for exotic options with non-smooth payoffs.

For a more in-depth explanation of the history of Malliavin Calculus, we refer to [4].

A New Approach For Computing Greeks

In this section, we shift our focus from Stochastic Calculus to its applications in finance.
Suppose we are a financial institution interested in selling option contracts. An option is
a financial contract that gives the buyer the right, but not the obligation, to buy or sell
an asset at a specific price (strike) on or before a specific date (maturity).

A financial institution that sells an option wants to protect itself from potential losses.
For example, if it sells a call option (which gives the buyer the right to buy a stock), and
the stock price rises above the strike price, the institution will have to sell the stock at
a lower price than the market. To reduce this risk, the institution holds some shares of
the stock. These shares help offset losses if the stock goes up. However, if the stock stays
below the strike price, holding shares could lead to losses instead.

That is why the institution needs to actively manage its stock holdings, buying or
selling shares as the stock price changes, to keep its risk under control. The value of an
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Figure 3: Call option payoff at maturity

option is influenced not only by the stock price but also by factors such as time to matu-
rity, implied volatility, and interest rates. The sensitivities of the option’s value to these
factors are known as the Greeks, and they play a crucial role in hedging the associated
risks. For our analysis, we will focus primarily on the risks stemming from stock price
movements, as they are typically the most significant source of risk for an option’s value.

If we denote the option value as V and the stock price as S, we can express the
variations on the value of this contract with respect to the changes in the underlying
stock using a Taylor expansion:

∆V ≈ ∂V

∂S
∆S +

1

2

∂2V

∂S2
(∆S)2 + · · ·

Where:

∆ =
∂V

∂S
, Γ =

∂2V

∂S2

These sensitivities are called Delta and Gamma. Delta tells us how many shares the
institution should hold to protect against small changes in the stock price. Gamma mea-
sures how quickly Delta changes when the stock price moves. It helps explain the error
that happens when we hedge using only Delta, especially during larger price movements.

It is clear that computing Delta and Gamma is crucial for successfully hedging an op-
tions portfolio. If the option is vanilla (a standard, plain option with no special or complex
features), these Greeks can be computed analytically in the Black-Scholes framework with
the following formulas:

∆ = Φ(d+), Γ =
ϕ(d+)

Sσ
√
T

Where Φ is the standard cumulative normal distribution, ϕ is the standard normal
distribution, σ is the implied volatility, T is the time to maturity, K is the strike price
and d+ is given by:
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Figure 4: Gamma of a vanilla option for different time values

d+ =
ln
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

However, what happens when we are dealing with an exotic option, one with more
complex features than a vanilla option? The short answer is that there is no closed-form
solution, so we will need to approximate the Greeks using a combination of a simulation
of a random variable for computing the option price and a finite difference approach for
calculating the derivatives.

For the random variable simulation, we need to assume a price dynamic for the un-
derlying asset. In the simplest setup, it is often considered that the stock price follows a
Geometric Brownian Motion, with the following expression:

ST = S0 exp

[(
r − 1

2
σ2

)
T + σWT

]
Here, we can express the Brownian Motion as:

WT =
√
TZ, Z ∼ N (0, 1)

Once we have simulated the stock price, we can calculate the value of the option for
an arbitrary payoff function f as follows:

V = e−rT E [f(ST )]

Where E denotes the expectation under the risk-neutral probability measure. Finally,
we compute the Greeks with a finite difference approach:

∆ ≈ V (ST +∆S)− V (ST )

∆S
, Γ ≈ V (ST +∆S)− 2V (ST ) + V (ST −∆S)

(∆S)2

This approach introduces two sources of numerical error. The first is due to the
simulation of ST , where we need to draw samples from a standard normal distribution.
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Since we cannot take an infinite number of samples, this introduces a slight error in the
calculation of the option price.

The second, more significant source of error arises from the finite difference method,
which depends on the step size ∆S and the smoothness of the payoff function f . Choosing
an appropriate ∆S minimizes the error in approximating the derivatives. However, if the
payoff function f has jumps or discontinuities, it becomes much harder to improve the
accuracy of the computation, as the derivatives at those points tend to infinity. Take, for
example, a digital call option, whose payoff is the following:

Figure 5: Digital call option for various time values

If we try to compute the derivatives numerically at the strike (where the option jumps),
we will have large precision issues. This is where Malliavin Calculus can significantly
outperform the finite difference approach. As we will explore in the next section, we can
compute any derivative of the option value V as:

∂V

∂x
= e−rT E [f(ST ) · weight]

where x is any underlying parameter of the option (stock price, volatility, etc.). In
other words, we have to multiply the payoff by a certain weight function that makes the
option price formula match its derivatives. With this approach, we completely eliminate
the numerical error that stems from the finite difference calculation.

The concepts from Malliavin Calculus allow us to find this weight function for any
payoff function, no matter how vanilla or exotic the option is. For a deeper look at option
hedging strategies, the reader can check [3].

Tools From Malliavin Calculus

We now move to a more formal section where we will define the mathematical tools
required for deducing the weight function shown previously. We begin by defining the
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Malliavin Derivative, which is an operator that enables us to differentiate random vari-
ables.

Let us first recall the definition of the chain rule for a deterministic function. For
a smooth function f(x1, . . . , xn) and deterministic variables xi, the derivative of f with
respect to a parameter t (if each xi depends on t) is:

d

dt
f(x1(t), . . . , xn(t)) =

n∑
i=1

∂f

∂xi

· dxi

dt

The Malliavin Derivative can be viewed as the stochastic case of this formula.

Definition 1 (Malliavin Derivative) Let F be a square-integrable random variable of
the form:

F = f(Wt1 ,Wt2 , . . . ,Wtn),

Where f is a smooth, deterministic function. The Malliavin Derivative of F , denoted as
DF is defined as follows:

DF =
n∑

i=1

∂f

∂xi

(Wt1 , . . . ,Wtn) · 1[0,ti](t) (1)

Throughout the remainder of the text, we will use D and Dt as equivalent notations.
We now give some examples:

Example 1 (Malliavin Derivative of Brownian Motion) Consider the random vari-
able F = Wt and the function f(x) = x. Then, using (1) we have that:

DWt = f ′(Wt) · 1[0,ti](t) = 1[0,ti](t)

This, intuitively, makes sense. In this example, we are performing a differentiation-
type operation where we can understand the Malliavin Derivative as something like D =
d/dWt. Thus, it makes sense that the derivative of Wt with respect to itself is one.

Example 2 (Malliavin Derivative of Geometric Brownian Motion) Consider the
random variable F = St and the function:

f(x) = S0 exp

[(
r − 1

2
σ2

)
T + σx

]
So that we have:

St = f(Wt) = S0 exp

[(
r − 1

2
σ2

)
T + σWt

]
Then, using (1) we get that:

DsSt = σ St 1[0,t](s)
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Again, this makes sense. If we differentiate St with respect to Wt we should get the σ
value down just as when we differentiate an exponential function. Note that we are not
differentiating in a conventional way with a limit, but in a stochastic way that mimics
the deterministic differentiation.

The next concept we will be defining is the Skorokhod Integral, which is a general-
ization of the Itô Integral that allows integration of non-adapted processes. It is also the
adjoint operator of the Malliavin Derivative, linking differentiation and integration in the
Malliavin Calculus framework in a way that preserves inner products.

Definition 2 (Skorokhod Integral) For a process u ∈ Dom(δ), the Skorokhod Integral
is denoted by:

δ(u) =

∫ T

0

ut δWt (2)

where u ∈ Dom(δ) is the subset of square-integrable processes for which δ(u) exists
and is also square-integrable.

If the process ut is adapted, then the Skorokhod Integral is a conventional Itô Integral:

δ(u) =

∫ T

0

ut dWt

Equipped with integral and differentiation operations, we are now ready to define the
stochastic version of the integration by parts (IBP) formula. From ordinary calculus, we
know that: ∫

f dg = fg −
∫

g df

The following definition gives a stochastic equivalent of this rule:

Definition 3 (Malliavin IBP Formula) Consider a random variable F and a square
integrable process u, such that u and Fu ∈ Dom(δ). Then:

δ(Fu) = Fδ(u)− ⟨DF, u⟩ (3)

where ⟨DA, u⟩ denotes the inner product in the space of square-integrable functions, so:

⟨DF, u⟩ =
∫ T

0

DtF · ut dt

A useful trick that we will use later on is setting u = 1 so we get:

δ(F ) = FWT −
∫ T

0

DtF dt (4)

Note that δ(1) is an Itô Integral so we have δ(1) =
∫ T

0
dWt = WT . With this, we can

easily compute the Skorokhod Integral of random variables if we know their Malliavin
Derivative. The following examples illustrate this:
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Example 3 (Skorokhod Integral of Brownian Motion) Consider the random vari-
able F = WT . Using (4) we have that:

δ(WT ) = W 2
T −

∫ T

0

DtWT dt = W 2
T − T

Let us now try with Geometric Brownian Motion:

Example 4 (Skorokhod Integral of Geometric Brownian Motion) For F = ST ,
we get:

δ(ST ) = ST WT −
∫ T

0

DtST dt = STWT − σSTT

We are now ready to define the formula for computing the weight function mentioned
in the previous section. For this purpose, we will use another integration by parts formula
that involves expectations of random variables. As we will see later, the Skorokhod
Integral present in this formula is the weight function we have been looking for.

Definition 4 (Malliavin IBP Formula for Expectations) Consider two random vari-
ables F and G and a random process u, where F is Malliavin Differentiable and u ∈
Dom(δ), then:

E
[
f ′(F )G

]
= E

[
f(F ) δ

(
Gu

⟨DF, u⟩

)]
(5)

We conclude this chapter with the following example:

Example 5 (Expectation of the Brownian Motion Malliavin Derivative) Consider
F = WT , G = 1 and u = 1[0,T ]. We can use (5) to derive the following:

E
[
f ′(WT )

]
= E

[
f(WT ) δ

(
1

T

)]
=

1

T
E
[
f(WT )WT

]
Where ⟨DWT , u⟩ = T and δ(1/T ) = WT/T .

Note that we have computed the derivative of a function of Brownian Motion by mul-
tiplying the original function f(WT ) by a certain weight given by δ(1/T ). This is almost
identical to what we have discussed in the previous section. The next step will be to use
this formula to compute Delta and Gamma.

This section follows the exposition in [2]. For a more rigorous and extensive treatment
of Malliavin calculus, we refer the reader to that reference.

Greeks Computation

In this section, we will compute Delta and Gamma using the Malliavin Calculus tech-
niques, following [2] closely. After that, we will perform some numerical experiments for
vanilla and exotic options. Recall that we are looking for a weight function that satisfies:

∂V

∂x
= e−rT E [f(ST ) · weight]
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In our case, we are interested in computing Delta as:

∆ =
∂V

∂S
= e−rT E [f(ST ) · weight∆]

and Gamma:

Γ =
∂2V

∂S2
= e−rT E [f(ST ) · weightΓ]

From our previous discussion, we know that this weight function is given by a Sko-
rokhod Integral, thus:

∆ = e−rT E [f(ST ) · δ(w∆)] , Γ = e−rT E [f(ST ) · δ(wΓ)]

We can derive the expressions for δ(w∆) and δ(wΓ) using the tools defined in the
previous section. From now on, we will use the notation S0 instead of S to denote the
stock price. Let us start by computing Delta:

∆ =
∂

∂S0

e−rT E [f(ST )] = e−rT E
[

∂

∂S0

f(ST )
∂ST

∂S0

]
= e−rT E

[
f ′(ST )

ST

S0

]
Note that ST = f(S0) so we have to apply the chain rule and that ∂ST/∂S0 = ST/S0.

If we take out S0 from the expectation, we get:

∆ =
e−rT

S0

E [f ′(ST )ST ]

where we can apply (5) assuming G = ST , F = ST and u = 1[0,T ]. Therefore:

∆ =
e−rT

S0

E
[
f(ST )δ

(
ST

σSTT

)]
=

e−rT

S0Tσ
E [f(ST )WT ]

Here we have computed ⟨DST , u⟩ = σTST (see example 2) and the Skorokhod Integral
is an Itô Integral as there are no random variables involved. Thus, the expression for the
Delta for any option with payoff f is the following:

∆ =
e−rT

S0Tσ
E [f(ST )WT ] (6)

We now proceed to the calculation of Gamma:

Γ =
∂2

∂S2
0

e−rT E [f(ST )] = e−rT ∂

∂S0

E
[
f ′(ST )

ST

S0

]
= e−rTE

[
f ′′(ST )

(
ST

S0

)2
]

Note that ST/S0 does not depend on S0 here. Next we have that:

Γ =
e−rT

S2
0

E
[
f ′′(ST )S

2
T

]
and using (5) where G = S2

T , F = ST and u = 1[0,T ] we get the following:
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Γ =
e−rT

S2
0

E
[
f ′(ST )δ

(
S2
T

σTST

)]
=

e−rT

S2
0Tσ

E [f ′(ST )δ(ST )]

From example 5 we now that δ(ST ) = STWT − σSTT , so:

Γ =
e−rT

S2
0Tσ

E [f ′(ST )(STWT − σSTT )]

and using (5) again but setting G = STWT − σSTT we reach the expression below:

Γ =
e−rT

S2
0Tσ

E
[
f(ST )δ

(
STWT − σSTT

σTST

)]
=

e−rT

(S0Tσ)2
E [f(ST )δ(WT − σT )]

We can split this last integral into a Skorokhod Integral δ(WT ) and an Itô Integral
δ(Tσ), and using the previous examples, we can reach the final expression of Gamma:

Γ =
e−rT

(S0Tσ)2
E
[
f(ST )(W

2
T − T −WTσT )

]
(7)

We are now ready to perform some numerical experiments to test the accuracy of the
Malliavin approach. Consider a European call option with the following parameters:

Volatility (σ) Time to Maturity (T ) Strike Price (K) Risk-Free Rate (r)

0.45 1 year $50 1%

Table 1: Parameters European call option

If we compute the Delta for several values of S, we get that the Malliavin Delta
matches exactly the finite difference approximation and the analytical solution.

Figure 6: Delta of a European call option
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It makes sense to have a closer look at S = K, where the numerical issues are more
present, as this is the point where the Delta jumps, especially when the option is close
to maturity. Performing various simulations at the strike price, we get:

Figure 7: ATM Delta of a European call option

As we can see, both the Malliavin and the finite difference method match the the-
oretical value of the Delta. However, the Malliavin Delta is much noisier, so despite
estimating correctly the value, it is not superior to the finite difference approach.

Now we will have a look at a more pathological case where the payoff function is
non-smooth. Consider a digital call option whose payoff at maturity is given by:

f(ST ) =

{
1 if ST ≤ K

0 if ST > K

If we compute the Delta for various values of S, for the parameters in Table 1, we get:

Figure 8: Delta of a digital call option
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Here, it is clear that we will have some difficulties at S = K, and if we look closer at
the graph, we can see that the finite difference method gets noisier around that point. If
we zoom in on the strike and test the two methods for different numbers of simulations,
we obtain the following:

Figure 9: ATM Delta of a digital call option

In this case, the Malliavin method outperforms the finite difference approach. How-
ever, it becomes even clearer if we consider the Gamma of the digital call option:

Figure 10: Gamma of a digital call option

At this stage, the finite difference method becomes unstable around the strike price
and performs poorly. Finally, if we take a closer look at the strike, we find that the
Malliavin approach outperforms the other method completely.

It is worth mentioning that in the finite difference method, we have kept the same
step size value for all the calculations performed (∆S = 5). We have tried and chosen
the value that minimizes the error.
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Figure 11: ATM Gamma of a digital call option

As a final note, we have used a digital option for comparison due to the fact that it
has analytical solutions for the Greeks, making the analysis easier, as there is an exact
solution that the two other methods should approach. However, it makes more sense to
use the Malliavin tools for payoffs where a closed-form solution does not exist.

It is even possible to use the Malliavin techniques for other price dynamics that
are different from Geometric Brownian Motion (such as the Heston Model, Fractional
Brownian Motion...). For a deeper look at this, the reader can check [5].

Conclusion

We have successfully derived an analytic expression for the Delta and Gamma of any
payoff function using the tools from Malliavin Calculus. Additionally, we have checked
that this new approach for computing the Greeks outperforms the traditional finite dif-
ference methods for exotic options with discontinuous payoffs, especially for higher order
Greeks.
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